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EXISTENCE AND STABILITY RESULTS FOR DIFFERENTIAL

EQUATIONS WITH COMPLEX ORDER INVOLVING HILFER

FRACTIONAL DERIVATIVE

S. HARIKRISHNAN1, K. KANAGARAJAN1, E.M. ELSAYED2

Abstract. In this paper, we study dynamical behaviour of differential equation involving Hilfer

fractional derivative with complex order. The existence of solution, Ulam-Hyers stability and

generalized Ulam-Hyers-Rassias stability results are investigated.
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1. Introduction

Fractional calculus deals with the study of fractional order integral and derivative operators

over real or complex domains and their applications are in the area of fluid flow, viscoelasticity,

control theory of dynamical systems, diffusive transport akin to diffusion, electrical networks,

probability and statistics, dynamical processes in self-similar and porous structures, electro-

chemistry of corrosion, optics and signal processing, rheology etc. There has been significant

development in fractional differential equations in recent years; see the monographs of Kilbas et

al. [8], Podlubny [13], Lakshmikantham et al. [10], Tomovski et al. [18]. The most common used

fractional derivatives are Riemann and Liouville, Caputo. The investigation of these derivatives

has been done already, readers can refer to [3, 9, 10, 16, 17, 20]. The generalisation of Riemann-

Liouville and Caputo derivatives was initiated by Hilfer [4]. Recently many researchers focused

their interest on Hilfer fractional derivative, see [2, 4, 6, 7, 15]. Love [11] developed sufficient

conditions for existence of derivatives of imaginary order, and its scope. Abdolali Neamaty et al.

[12] considered the fractional boundary value problem for differential equation of complex-order.

Most recently, Atanackovic et al. [1] introduced complex order fractional derivatives in models

that describe viscoelastic materials. Further D. Vivek et al. [19] analyzed Ulam stability results

for integro-differential equations with complex order. In particular, the Ulam- Hyers stability

and Ulam-Hyers-Rassias stability have been taken up by number of mathematicians and the

study of this area has the grown to be one of the central subjects in the mathematical analysis

area. For more details reader can refer to [5, 14, 19]. Inspired by the above discussion, we

introduce complex order to Hilfer fractional derivative.

Consider the Hilfer fractional derivative of complex order is as follows

Dθ1,θ2x(t) = f(t, x(t)), t ∈ J := [0, T ], (1)

I1−θx(0) = a, θ = θ1 + θ2 − θ1θ2, (2)

1Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, India
2Department of Mathematics, Mansoura University, Egypt

e-mail: hkkhari1@gmail.com, kanagarajank@gmail.com, emmelsayed@yahoo.com

Manuscript received December 2017.

94



S. HARIKRISHNAN et al: EXISTENCE AND STABILITY RESULTS FOR DIFFERENTIAL... 95

where Dθ1,θ2(θ1, θ2 ∈ C) is Hilfer fractional derivative of order θ1 = α+iβ and of type θ2 = γ+iη.

Here 0 < θ1 < 1 and 0 ≤ θ2 ≤ 1, with α, β, γ and η ∈ R. Let f : J × R → R be a continuous

function. The paper is organised as follows. In Section 2, we give some basic definitions and

results concerning with the Hilfer fractional derivative. In Section 3, we present our main result

by using fixed point theorem. In Section 4, we discuss four king of Ulam type stability.

2. Preliminaries

For the ease of the readers, we present some basic definitions and lemmas. Next, consider the

following spaces. Let C(J) be the Banach space of all continuous functions defined on J into R

with the norm

∥x∥C := max{|x(t)| : t ∈ J}.
The weighted space C1−ξ(J) of functions f on J is defined by

C1−ξ(J) =
{
f : J → R : t1−ξf(t) ∈ C(J)

}
, 0 ≤ ξ(= ℜ(θ)) < 1,

with the norm

∥f∥C1−ξ
=

∥∥∥t1−ξf(t)
∥∥∥
C(J)

= max
t∈J

∣∣∣t1−ξf(t)
∣∣∣ .

An extensive on complex order, one can refer to [11, 12, 19].

Definition 2.1. The Riemann fractional integral of order θ ∈ C, (ℜ(θ) > 0) of a function f

is defined by,

Iθf(t) =
1

Γ(θ)

∫ t

0
(t− s)θ−1f(s)ds, t ≥ 0.

Definition 2.2. The Riemann fractional derivative of order θ ∈ C, (ℜ(θ) > 0) of a function

f is defined by,

Dθf(t) =
1

Γ(n− θ)

dn

dtn

∫ t

0
(t− s)n−θ−1f(s)ds, t ≥ 0.

where n = [ℜ(θ)] + 1.

Definition 2.3. The Caputo fractional derivative of order θ ∈ C, (ℜ(θ) > 0) of function f is

defined by,

Dθf(t) =
1

Γ(n− θ)

∫ t

0
(t− s)n−θ−1fn(s)ds.

Definition 2.4. The Hilfer fractional derivative of order 0 < θ1 < 1 and 0 ≤ θ2 ≤ 1 of

function f(t) is defined by

Dθ1,θ2f(t) = (Iθ2(1−θ1)D(I(1−θ2)(1−θ1)f))(t).

The Hilfer fractional derivative is used as an interpolator between the Riemann-Liouville and

Caputo derivative.

Remark 2.1. (a) The operator Dθ1,θ2 also can be written as

Dθ1,θ2 = (Iθ2(1−θ1)D(I(1−θ2)(1−θ1))) = Iθ2(1−θ1)Dθ, θ = θ1 + θ2 − θ1θ2.

(b) If θ2 = 0(γ = 0, η = 0), then Dθ1,θ2 = Dθ1,0 is called Riemann-Liouville fractional

derivative.

(c) If θ2 = 1(γ = 1, η = 0), then Dθ1,θ2 = I1−θ1D is called Caputo fractional derivative.
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Definition 2.5. The Stirling asymptotic formula of Gamma function for z ∈ C is following

Γ(z) = (2π)1/2zz−
1
2 e−z

[
1 +O

(
1

z

)]
(|arg(z)| < π; |z| → ∞),

and its result for |Γ(a+ ib)| , (a, b ∈ R) is

|Γ(a+ ib)| = (2π)1/2 |b|a−
1
2 e−a−π|b|

2

[
1 +O

(
1

z

)]
(b→ ∞).

Here we adopt some definitions from [5, 19].

Definition 2.6. Eq.(1) is Ulam-Hyers stable if there exists a real number Cf > 0 such that

for each ϵ > 0 and for each solution z ∈ C1−ξ(J) of the inequality∣∣∣Dθ1,θ2z(t)− f(t, z(t)
∣∣∣ ≤ ϵ, t ∈ J, (3)

there exists a solution x ∈ C1−ξ(J) in Eq.(1) with

|z(t)− x(t)| ≤ Cf ϵ, t ∈ J.

Definition 2.7. Eq. (1) is generalized Ulam-Hyers stable if there exist ψ ∈ C1−ξ(J), ψf (0) =

0 such that for each solution z ∈ C1−ξ(J) of the inequality∣∣∣Dθ1,θ2z(t)− f(t, z(t))
∣∣∣ ≤ ϵ, t ∈ J, (4)

there exists a solution x ∈ C1−ξ(J) in Eq. (1) with

|z(t)− y(t)| ≤ ψf ϵ, t ∈ J.

Definition 2.8. Eq.(1) is Ulam-Hyers-Rassias stable with respect to φ ∈ C1−ξ(J) if there

exists a real number Cf > 0 such that for each solution z ∈ C1−ξ(J) of the inequality∣∣∣Dθ1,θ2z(t)− f(t, z(t))
∣∣∣ ≤ ϵφ(t), t ∈ J, (5)

there exists a solution x ∈ C1−ξ(J) in Eq.(1) with

|z(t)− x(t)| ≤ Cf ϵφ(t), t ∈ J.

Definition 2.9. Eq.(1) is generalized Ulam-Hyers-Rassias stable with respect to φ ∈ C1−ξ(J)

if there exists a real number Cf,φ > 0 such that for each solution z ∈ C1−ξ(J) of the inequality∣∣∣Dθ1,θ2z(t)− f(t, z(t))
∣∣∣ ≤ φ(t), t ∈ J, (6)

there exists a solution x ∈ C1−ξ(J) in Eq.(1) with

|z(t)− x(t)| ≤ Cf,φφ(t), t ∈ J.

We state the following generalization of Gronwall’s lemma for singular kernals.

Lemma 2.1. Let v : [0, T ] → [0,∞) be a real function and w(·) is a nonnegative, locally

integrable function on [0, T ] and there are constants a > 0 and 0 < α < 1 such that

v(t) ≤ w(t) + a

∫ t

0

v(s)

(t− s)α
ds.

Then there exists a constant k = k(α) such that

v(t) ≤ w(t) +Ka

∫ t

0

W (s)

(t− s)α
ds,

for every t ∈ [0, T ].
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Theorem 2.1. (Schauder fixed point theorem) Let E be a Banach space and Q be a nonempty

bounded convex and closed subset of E and N : Q → Q is compact, and continuous map. Then

N has at least one fixed point in Q.

Lemma 2.2. If x is the solution of the equation Eq.(1)-(2), if and only if it satisfies the

following integral equation

x(t) = x0
tθ−1

Γ(θ)
+

1

Γ(θ1)

∫ t

0
(t− s)θ1−1f(s, x(s))ds, (7)

3. Existence and uniqueness results

In this section, we study the existence and uniqueness of solutions for Eq.(1)-(2). To treat

this system, we introduce the following hypotheses.

(H1) Let f : J × R → R be continuous. For x, y ∈ R, there exists a positive constant L > 0

such that

|f(t, x)− f(t, y)| ≤ L |x− y| .

(H2) There exists a constant m,n such that

|f(t, x)| ≤ m+ n |x| , ∀ t ∈ J, x ∈ R.

(H3)

ρ =
LB(ξ, α)

|Γ(θ1)|
Tα.

(H4) Suppose that there exists λφ > 0 such that

Iθ1φ(t) ≤ λφφ(t).

Theorem 3.1. Assume that [H1] and [H2] are satisfied. Then, Eq.(1)-(2) has at least one

solution.

Proof. Consider the operator N : C1−ξ(J) → C1−ξ(J) given by

(Nx)(t) = x0
tθ−1

Γ(θ)
+

1

Γ(θ1)

∫ t

0
(t− s)θ1−1f(s, x(s))ds. (8)

It is obvious that the operator N is well defined. Clearly, the fixed points of the operator N are

solutions of the problem. For any x ∈ C1−ξ(J) and each t ∈ J we have,

|(Nx)(t)| ≤ x0

∣∣tθ−1
∣∣

|Γ(θ)|
+

1

|Γ(θ1)|

∫ t

0

∣∣∣(t− s)θ1−1
∣∣∣ |f(s, x(s))| ds

≤ x0
tξ−1

|Γ(θ)|
+

1

|Γ(θ1)|

∫ t

0
(t− s)α−1 |m+ nx(s)| ds,

∥(Nx)(t)∥C1−ξ
≤ x0

|Γ(θ)|
+

t1−ξ

|Γ(θ1)|
m

∫ t

0
(t− s)α−1ds+

t1−ξ

|Γ(θ1)|
n

∫ t

0
(t− s)α−1 |x(s)| ds

≤ x0
|Γ(θ)|

+
t1−ξ

α |Γ(θ1)|
mtα +

t1−ξ

|Γ(θ1)|
nB(ξ, α)tα+ξ−1 ∥x∥C1−ξ

≤ x0
|Γ(θ)|

+
m

α |Γ(θ1)|
Tα+1−ξ +

nB(ξ, α)

|Γ(θ1)|
Tα ∥x∥C1−ξ

:= r.
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This proves that N transforms the ball Br =
{
x ∈ C1−ξ(J) : ∥x∥C1−ξ

≤ r
}

into itself. The

proof is divided into several steps. �

Step 1: Now we show that N : Br → Br is continuous.

Let xn be a sequence such that xn → x in Br. Then for each t ∈ J , we have∣∣∣((Nxn)(t)− (Nx)(t)) t1−ξ
∣∣∣

≤
∣∣∣∣ t1−ξ

Γ(θ1)

∫ t

0
(t− s)θ1−1f(s, xn(s))ds−

t1−ξ

Γ(θ1)

∫ t

0
(t− s)θ1−1f(s, x(s))ds

∣∣∣∣
≤ t1−ξ

|Γ(θ1)|

∫ t

0
(t− s)α−1 |f(s, xn(s))− f(s, x(s))| ds

≤ t1−ξ

|Γ(θ1)|
B(ξ, α)(t− s)α+ξ−1 ∥f(·, xn(·))− f(·, x(·))∥C1−ξ

.

Since f is continuous, then by the Lebesgue dominated convergence theorem which implies

∥(Nxn)− (Nx)∥C1−ξ
→ 0 as n→ ∞.

Step 2: N(Br) is uniformly bounded.

It is clear that N(Br) ⊂ Br is bounded.

Step 3: N(Br) is equicontinuous.

Let t1, t2 ∈ J, t1 < t2. Then,∣∣∣(Nx)(t1)t1−ξ
1 − (Nx)(t2)t

1−ξ
2

∣∣∣
≤ t1−ξ

1

|Γ(θ1)|

∫ t1

0
(t1 − s)α−1 |f(s, x(s))| ds− t1−ξ

2

|Γ(θ1)|

∫ t2

0
(t2 − s)α−1 |f(s, x(s))| ds

≤
∥f∥C1−ξ

|Γ(θ1)|
B(ξ, α) |tα1 − tα2 | .

As a consequence of Steps 1 to 3 together with the Arzela-Ascoli theorem, we can conclude

that N is continuous and compact. From an application of Schauder’s Theorem 2.1, we deduce

that N has a fixed point x which is a solution of the problem Eq. (1)-(2).

Theorem 3.2. If hypothesis (H1) and (H3) are fulfilled. Then the Eq. (1)-(2) has a unique

solution.

Proof. By Eq. (7), it is clear that the fixed points of N is solutions of Eq. (1).

Let x, y ∈ C1−ξ(J) and for t ∈ J , we have

∣∣∣((Nx)(t)− (Ny)(t)) t1−ξ
∣∣∣ ≤ t1−ξ

Γ(θ1)

t∫
0

∣∣∣(t− s)θ1−1
∣∣∣ |(f(s, x(s))− f(s, y(s)))| ds

≤ t1−ξ

|Γ(θ1)|

t∫
0

(t− s)α−1 |f(s, x(s))− f(s, y(s))| ds ≤ Lt1−ξ

|Γ(θ1)|
B(ξ, α)tα+ξ−1 ∥x− y∥C1−ξ

≤ LB(ξ, α)

|Γ(θ1)|
Tα ∥x− y∥C1−ξ

:= ρ ∥x− y∥C1−ξ
.

�
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4. Stability results

Next, the criteria of Ulam-Hyers stability and generalised Ulam-Hyers-Rassias stability for

differential equations under complex order Hilfer fractional derivative is analysed.

Remark 4.1. A function z ∈ C1−ξ(J) is a solution of the inequality∣∣∣Dθ1,θ2z(t)− f(t, z(t))
∣∣∣ ≤ ϵ, t ∈ J,

if and only if there exist a function g ∈ C1−ξ(J) such that

(i) |g(t)| ≤ ϵ, t ∈ J .

(ii) Dθ1,θ2z(t) = f(t, z(t)) + g(t), t ∈ J .

Remark 4.2. If z is solution of the inequality (3), then z is a solution of the following integral

inequality ∣∣∣∣z(t)− z0
tθ−1

Γ(θ)
− 1

Γ(θ1)

∫ t

0
(t− s)θ1−1f(s, z(s))ds

∣∣∣∣ ≤ (
Tα

α |Γ(θ1)|

)
ϵ.

Indeed, by Remark 4.1 we have that

Dθ1,θ2z(t) = f(t, z(t)) + g(t), t ∈ J.

Then

z(t) = z0
tθ−1

Γ(θ)
+

1

Γ(θ1)

∫ t

0
(t− s)θ1−1(f(s, z(s)) + g(s))ds.

From this it follows that∣∣∣∣z(t)− z0
tθ−1

Γ(θ)
− 1

Γ(θ1)

∫ t

0
(t− s)θ1−1f(s, z(s))ds

∣∣∣∣ ≤ ∣∣∣∣ 1

Γ(θ1)

∫ t

0
(t− s)θ1−1g(s)ds

∣∣∣∣
≤ 1

|Γ(θ1)|

∫ t

0

∣∣∣(t− s)θ1−1
∣∣∣ |g(s)| ds ≤ 1

|Γ(θ1)|

∫ t

0

∣∣(t− s)α−1
∣∣ |g(s)| ds ≤ (

Tα

α |Γ(θ1)|

)
ϵ.

We have similar remarks for the inequality (4), (5) and (6).

Now, we give the main results, generalised Ulam-Hyers-Rassias stable results.

Theorem 4.1. The hypotheses [H1] and [H4] holds. Then Eq.(1)-(2) is generalised Ulam-Hyers-

Rassias stable.

Proof. Let z be solution of inequality 6 and by Theorem 3.2 there x is a unique solution of the

problem

Dθ1,θ2x(t) = f(t, x(t)),

I1−θx(0) = I1−θz(0) = x0, θ = θ1 + θ2 − θ1θ2.

Then we have

x(t) = x0
tθ−1

Γ(θ)
+

1

Γ(θ1)

∫ t

0
(t− s)θ1−1f(s, x(s))ds.

By differentiating inequality (6), we have∣∣∣∣z(t)− x0
tθ−1

Γ(θ)
− 1

Γ(θ1)

∫ t

0
(t− s)θ1−1f(s, z(s))ds

∣∣∣∣ ≤ ∣∣∣∣ 1

Γ(θ1)

∫ t

0
(t− s)θ1−1φ(s)ds

∣∣∣∣ ≤ λφφ(t).
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Hence it follows that,

|z(t)− x(t)| ≤
∣∣∣∣z(t)− x0

tθ−1

Γ(θ)
− 1

Γ(θ1)

∫ t

0
(t− s)θ1−1f(s, x(s))ds

∣∣∣∣
≤

∣∣∣∣z(t)− x0
tθ−1

Γ(θ)
− 1

Γ(θ1)

∫ t

0
(t− s)θ1−1f(s, z(s))ds

∣∣∣∣
+

∣∣∣∣∫ t

0
(t− s)θ1−1 (f(s, z(s))− f(s, x(s))) ds

∣∣∣∣ ≤ λφφ(t) +
LTα

α |Γ(θ1)|
|z − x| .

By Lemma 2.1., there exists a constant M∗ > 0 independent of λφφ(t) such that

|z(t)− x(t)| ≤M∗φ(t).

Thus, Eq.(1)-(2) is generalized Ulam-Hyers-Rassias stable. �

5. Conclusion

In this research work we have considered a class of fractional differential equations involving

Hilfer fractional derivative of complex order. We have investigated existence theory as well as

various kinds of Ulam stability results for the solutions of the considered problem.
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