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MATHEMATICAL AND NUMERICAL MODELING OF THE COUPLED

DYNAMIC THERMOELASTIC PROBLEMS FOR ISOTROPIC BODIES

A.A. QALANDAROV1, A.A. KHALDJIGITOV2

Abstract. A statement of the two-dimensional coupled thermodynamic boundary problem for

isotropic bodies is presented in this paper. Corresponding explicit and implicit finite difference

schemes are developed. Obtained schemes are solved by means of elimination method and

recurrence formulas, respectively. A comparative solution clearly displays a good coincidence.

Keywords: thermo-elasticity, coupled problem, thermal conductivity, difference equations, ex-

plicit scheme, implicit scheme, grid method, elimination method.

AMS Subject Classification: 74S20.

1. Introduction

The investigation of deformation process in elastic and plastic bodies, taking into account tem-

perature distribution plays an important role in many applications of scientific and engineering

problems associated with heating various structures and its elements under thermomechanical

load.

The aforementioned thermomechanical deformation process of solids may be described by

coupled and uncoupled thermoelastic or thermoplastic boundary value problems.

Recently researchers have paid special attention to adequate mathematical modeling of cou-

pled thermomechanical eformation processes in isotropic and anisotropic materials. The coupled

thermodynamic problem was firstly considered by Biot [2] in 1956.

Further, those investigations were continued in many papers, among them the most popular

are [1, 3, 5, 6, 9], and others.

In general, thermodynamic linear coupled boundary value problem for elastic bodies consists

of the motion equations in conjunction with the heat equation.

Coupled thermoelastic boundary problem, generally consisting of three hyperbolic and a para-

bolic heat equation depending on three components of the displacement vector and temperature,

is very complexed. It may be solved analytically only for some single dimensional particular cases

or for specially selected shapes of solids and coordinate systems. This paper deals with numer-

ical solution of two-dimensional dynamical coupled problems of thermoelasticity for isotropic

bodies.

Using finite difference methods, explicit and implicit schemes were constructed. For numerical

solution of finite difference equations the elimination method and recurrence formulas (in the

case of explicit schemes), were applied. Comparison in terms of numerical results and graphs,

of the two methods proves reliability and validity of the obtained results.
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Problem 1.1. The coupled thermodynamic thermoelastic boundary value problem consists

of the system of equations and equalities, including motion equations for isotropic materials [7]

σij,j +Xi = ρüi. (1)

Duhamel-Neuman thermoelasticity constitutive relations are

σij = λθδij + µεij − α(3λ+ 2µ)(T − T0)δij . (2)

Cauchy equalities are

εij =
1

2
(ui,j + uj,i) , (3)

for the heat equation for isotropic bodies

λ0T,ii − cεṪ − α(3λ+ 2µ)T0ε̇ii = 0, (4)

with corresponding initial

ui|t=t0
= φi, u̇i|t=t0

= ψi, T |t=t0
= T0, (5)

and boundary conditions

ui|∑
1
= u0i , T |∑ = T̄0, σijnj |∑

2
= S0

i , (6)

where, cε− denotes heat at a constant deformation, α− corresponds to thermal expansion coef-

ficient, λ0− is the heat flow coefficient, σij− stress tensor, εij− strain tensor, ui− displacement,

T− temperature, T0− initial temperatureXi− volume force, λ, µ− Lame constants, θ− spherical

part of strain tensor, ρ− density of the body, δij− delta Kronecker symbol.

Equations (1-6) are applied for the two dimensional cases.

Substituting eq.(3) into eq.(2) and obtained results into eq.(1) we get the equation of motion

for displacement

(λ+ 2µ)
∂2u

∂x2
+ µ

∂2u

∂y2
+ (λ+ µ)

∂2v

∂x∂y
− (3λ+ 2µ)α

∂T

∂x
= ρ

∂2u

∂t2
, (7)

(λ+ 2µ)
∂2v

∂y2
+ µ

∂2v

∂x2
+ (λ+ µ)

∂2u

∂x∂y
− (3λ+ 2µ)α

∂T

∂y
= ρ

∂2v

∂t2
, (8)

and 2D heat equations

λ0(
∂2T

∂x2
+
∂2T

∂y2
)− cε

∂T

∂t
− α(3λ+ 2µ)T0(

∂2u

∂x∂t
+

∂2v

∂y∂t
) = 0, (9)

with initial

u (x, y, t)|t=0 = ϕ1,
∂u

∂t

∣∣∣∣
t=0

= ψ1, v (x, y, t)|t=0 = ϕ2,
∂v

∂t

∣∣∣∣
t=0

= ψ2, T (x, y, t)|t=0 = T0,

and boundary conditions in 2D case

u (x, y, t)|x=0 = u0, u (x, y, t)|x=ℓ1
= ū0, u (x, y, t)|y=0 = u′0, u (x, y, t)|y=ℓ 2 = ū′0,

v (x, y, t)|x=0 = v0, v (x, y, t)|x=ℓ 1 = v̄0, v (x, y, t)|y=0 = v′0, v (x, y, t)|y=ℓ 2 = v̄′0,

T (x, y, t)|x=0 = T1 (t) , T (x, y, t)|x=ℓ 1 = T2 (t) ,

T (x, y, t)|y=0 = T1
′
(t) , T (x, y, t)|y=ℓ 2 = T ′

2 (t) .
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2. Finite difference equations

Considering within domain t ≥ 0, 0 ≤ x ≤ l1, 0 ≤ y ≤ l2 two sets of parallel lines

x = ih1 (i = 0, n) , y = jh2 (j = 0, n) , t = kτ (k = 0, 1, 2, ...) and replacing

corresponding derivatives in eqs.(7-9) by difference equivalents, we obtain [8]

(λ+ 2µ)
uk
i+1,j−2uk

i,j+uk
i−1,j

h2
1

+ (λ+ µ)
vki+1,j+1−vki−1,j+1−vki+1,j−1+vki−1,j−1

4h1h2
+

µ
uk
i,j+1−2uk

i,j+uk
i,j−1

h2
2

− γ
Tk
i+1,j−Tk

i−1,j

2h1
= ρ

uk+1
i,j −2uk

i,j+uk−1
i,j

τ2

(λ+ 2µ)
vki,j+1−2vki,j+vki,j−1

h2
1

+ (λ+ µ)
uk
i+1,j+1−uk

i−1,j+1−uk
i+1,j−1+uk

i−1,j−1

4h1h2
+

µ
vki+1,j−2vki,j+vki−1,j

h2
2

− γ
Tk
i,j+1−Tk

i,j−1

2h2
= ρ

vk+1
i,j −2vki,j+vk−1

i,j

τ2


, (10)

and the heat equation

λ0(
Tk
i+1,j−2Tk

i,j+Tk
i−1,j

h2
1

+
Tk
i,j+1−2Tk

i,j+Tk
i,j−1

h2
2

)− cε
Tk+1
i,j −Tk

i,j

τ −

−γT0
(

uk+1
i+1,j−uk+1

i−1,j−uk−1
i+1,j+uk−1

i−1,j

4h1τ
+

vk+1
i,j+1−vk+1

i,j−1−vk−1
i,j+1+vk−1

i,j−1

4h2τ

)
= 0,

(11)

where γ = α(3λ + 2µ), n−number of segments. Solving discreet system of equations (10) and

(11) in terms of uk+1
i,j , vk+1

i,j , T k+1
i,j respectively, we get [4]

uk+1
i,j = τ2

ρ

(
(λ+ 2µ)

uk
i+1,j−2uk

i,j+uk
i−1,j

h2
1

+ µ
uk
i,j+1−2uk

i,j+uk
i,j−1

h2
2

+

+(λ+ µ)
vki+1,j+1−vki−1,j+1−vki+1,j−1+vki−1,j−1

4h1h2
− γ

Tk
i+1,j−Tk

i−1,j

2h1

)
+ 2uki,j − uk−1

i,j ,
(12)

vk+1
i,j = τ2

ρ

(
(λ+ 2µ)

vki,j+1−2vki,j+uk
i,j−1

h2
2

+ µ
vki+1,j−2vki,j+vki−1,j

h2
1

+

+(λ+ µ)
uk
i+1,j+1−uk

i−1,j+1−uk
i+1,j−1+uk

i−1,j−1

4h1h2
− γ

Tk
i,j+1−Tk

i,j−1

2h2

)
+ 2vki,j − vk−1

i,j
(13)

T k+1
i,j = τ

cε

(
λ0(

Tk
i+1,j−2Tk

i,j+Tk
i−1,j

h2
1

+
Tk
i,j+1−2Tk

i,j+Tk
i,j−1

h2
2

)−

−γT0
(

uk+1
i+1,j−uk+1

i−1,j−uk−1
i+1,j+uk−1

i−1,j

4h1τ
+

vk+1
i,j+1−vk+1

i,j−1−vk−1
i,j+1+vk−1

i,j−1

4h2τ

))
+ T k

i,j .
(14)

As it can be seen, eq. (12,13) and eq. (14) allow us to find function values u(x, y, t), v(x, y, t),

T (x, y, t) at the layer tk+1using the given values of those functions at two aforetime layers. Using

appropriate values of u(x, y, t) and v(x, y, t)for two primary layers k = 0 and k = 1 we can obtain

from the initial conditions

u0i,j = φ1(xi, yj), v
0
i,j = φ2(xi, yj), T

0
i,j = T0.

Rewriting eq.(12) for k=0

u1i,j =
τ2

ρ

(
(λ+ 2µ)

u0
i+1,j−2u0

i,j+u0
i−1,j

h2
1

+ µ
u0
i,j+1−2u0

i,j+u0
i,j−1

h2
2

+

+(λ+ µ)
v0i+1,j+1−v0i−1,j+1−v0i+1,j−1+v0i−1,j−1

4h1h2
− γ

T 0
i+1,j−T 0

i−1,j

2h1

)
+ 2u0i,j − u−1

i,j ,
(15)

and the initial condition ∂u
∂t

∣∣
t=0

= ψ1 in the following form

u1i,j − u−1
i,j

2τ
= ψ1(xi, yj),
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or

u1i,j = 2τψ1(xi, yj) + u−1
i,j , (16)

and eliminating u−1
i,j from eqs. (15,16) we postulate

u1i,j =
1
2

(
τ2

ρ

(
(λ+ 2µ)

u0
i+1,j−2u0

i,j+u0
i−1,j

h2
1

+ µ
u0
i,j+1−2u0

i,j+u0
i,j−1

h2
2

+

+(λ+ µ)
v0i+1,j+1−v0i−1,j+1−v0i+1,j−1+v0i−1,j−1

4h1h2
− γ

T 0
i+1,j−T 0

i−1,j

2h1

)
+ 2u0i,j + 2τψ1

)
.

(17)

Exactly in the same way from eq.(13) we can derive the function u(x, y, t)

v1i,j =
1
2

(
τ2

ρ

(
(λ+ 2µ)

v0i,j+1−2v0i,j+u0
i,j−1

h2
2

+ µ
v0i+1,j−2v0i,j+v0i−1,j

h2
1

+

+(λ+ µ)
u0
i+1,j+1−u0

i−1,j+1−u0
i+1,j−1+u0

i−1,j−1

4h1h2
− γ

T 0
i,j+1−T 0

i,j−1

2h2

)
+ 2v0i,j + 2τψ2

)
.

(18)

Replacing mixed derivatives in eq.(11) with another finite difference we can deduce the relation

for values of T (x, y, t) at the first time layer

T 1
i,j =

τ
cε

(
λ0

(
T 0
i+1,j−2T 0

i,j+T 0
i−1,j

h2
1

+
T 0
i,j+1−2T 0

i,j+T 0
i,j−1

h2
2

)
−

−γT0
(

u1
i+1,j−u1

i−1,j−u0
i+1,j+u0

i−1,j

2h1τ
+

v1i,j+1−v1i,j−1−v0i,j+1+v0i,j−1

2h2τ

)
+ T 0

i,j .
(19)

In the above-mentioned formulae, an explicit scheme has just been used. Now let us consider

an implicit scheme for numerical solutions of coupled thermoelasticity problems. In this case,

we transform eqs.(7-9) to the following form

(λ+ 2µ)
uk+1
i+1,j−2uk+1

i,j +uk+1
i−1,j

h2
1

+ (λ+ µ)
vki+1,j+1−vki−1,j+1−vki+1,j−1+vki−1,j−1

4h1h2
+

µ
uk
i,j+1−2uk

i,j+uk
i,j−1

h2
2

− γ
Tk
i+1,j−Tk

i−1,j

2h1
= ρ

uk+1
i,j −2uk

i,j+uk−1
i,j

τ2
,

(20)

(λ+ 2µ)
vki,j+1−2vki,j+vki,j−1

h2
1

+ (λ+ µ)
uk
i+1,j+1−uk

i−1,j+1−uk
i+1,j−1+uk

i−1,j−1

4h1h2
+

µ
vk+1
i+1,j−2vk+1

i,j +vk+1
i−1,j

h2
2

− γ
Tk
i,j+1−Tk

i,j−1

2h2
= ρ

vk+1
i,j −2vki,j+vk−1

i,j

τ2
,

(21)

λ0(
Tk+1
i+1,j−2Tk+1

i,j +Tk+1
i−1,j

h2
1

+
Tk
i,j+1−2Tk

i,j+Tk
i,j−1

h2
2

)− cε
Tk+1
i,j −Tk

i,j

τ −

−γT0
(

uk+1
i+1,j−uk+1

i−1,j−uk−1
i+1,j+uk−1

i−1,j

4h1τ
+

vk+1
i,j+1−vk+1

i,j−1−vk−1
i,j+1+vk−1

i,j−1

4h2τ

)
= 0.

(22)

The stencil of eq.(20) is three-point in space

aiu
k+1
i+1,j + biu

k+1
i,j + ciu

k+1
i−1,j = fi, (23)

where ai =
λ+2µ
h2
1

, bi = − ρ
τ2

− 2(λ+2µ)
h2
1

, ci =
λ+2µ
h2
1

,

fi = ρ
−2uk

i,j+uk−1
i,j

τ2
− (µ

uk
i,j+1−2uk

i,j+uk
i,j−1

h2
2

+ (λ+ µ)
vki+1,j+1−vki−1,j+1−vki+1,j−1+vki−1,j−1

4h1h2
−

−γ Tk
i+1,j−Tk

i−1,j

2h1
).

The finite difference eq.(21) may also be reduced to the following form

aiv
k+1
i+1,j + biv

k+1
i,j + civ

k+1
i−1,j = fi, (24)
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where ai =
µ
h2
1
, bi = − ρ

τ2
− 2µ

h2
1
, ci =

µ
h2
1
,

fi = ρ
−2vki,j+vk−1

i,j

τ2
− ((λ+ 2µ)

vki,j+1−2vki,j+vki,j−1

h2
1

+ (λ+ µ)
uk
i+1,j+1−uk

i−1,j+1−uk
i+1,j−1+uk

i−1,j−1

4h1h2
−

−γ Tk
i,j+1−Tk

i,j−1

2h2
),

and the discreet heat eq.(22) takes following form

aiT
k+1
i+1,j + biT

k+1
i,j + ciT

k+1
i−1,j = fi, (25)

where

ai =
λ0
h21
, bi = −2λ0

h21
− cε
τ
, ci =

λ0
h21
,

f0 = γT0

(
uk+1
i+1,j−uk+1

i−1,j−uk−1
i+1,j+uk−1

i−1,j

4h1τ
+

vk+1
i,j+1−vk+1

i,j−1−vk−1
i,j+1+vk−1

i,j−1

4h2τ

)
− cε

Tk
i,j

τ −

−λ0
Tk
i,j+1−2Tk

i,j+Tk
i,j−1

h2
2

.

Values of unknown functions u(x, y, t), v(x, y, t) and T (x, y, t) at the first two time layers,

can be straightforwardly determined from initial conditions and formulae eqs.(17-19). Values

of state variables subsequent layers are computed by solving eqs.(23-25) with the elimination

method taking into account, given initial and boundary conditions.

3. Numerical tests

As a test case example coupled thermoelasticity problem (1-6) was simulated using the re-

currence formulas and elimination method for the following constants, initial and boundary

conditions:

λ0 = 0.053, λ = 0.92, µ = 0.48, α = 0.064, cε = 3.47, T0 = 25,

h1 = 0.1, h2 = 0.1, τ = 0.01, ρ = 0.783, ℓ1 = ℓ2 = 1,

u (x, y, t)|t=0 = 0, v (x, y, t)|t=0 = 0, T (x, y, t)|t=0 = T0sin(πx(i)) sin(πy(j)),

u (x, y, t)| = 0, v (x, y, t)| = 0, T (x, y, t)| = 0,

where Γ - boundary of the body.

The following Figures 1-6 show the displacement components u(x, y, t), v(x, y, t) and temper-

ature T (x, y, t) distributions in 2D space. It should be noted, that every unknown value was

computed using the elimination method (green line) and recurrence formulas (red line).

Figure 1. The displacement u(x, y, t) along the Figure 2. The displacement u(x, y, t)along the

x-y-axis at t = 0.1(recurrence formula). x-y-axis at t = 0.1(elimination method).
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Figure 3. The displacement v(x, y, t)along the Figure 4. The displacement v(x, y, t)along the

x-y-axis at t = 0.1(recurrence formula). x-y-axis at t = 0.1(elimination method).

Figure 5. The displacement T (x, y, t)along the Figure 6. The displacement T (x, y, t)along the

x-y-axis at t = 0.1(recurrence formula). x-y-axis at t = 0.1(elimination method).

Table 1a. Values of the displacement component u(x, y, t)at time layer k=9 computed by elimination method.

x/y 0 0.1 0.2 0.3 0.4

0 0 0 0 0 0

0.1 0 −0.0243 −0.0239 −0.0176 −0.0093

0.2 0 −0.0433 −0.0429 −0.0315 −0.0166

0.3 0 −0.0595 −0.0588 −0.0431 −0.0227

0.4 0 −0.0698 −0.0690 −0.0506 −0.0266

0.5 0 −0.0734 −0.0725 −0.0532 −0.0280

Table 1b. Values of the displacement component u(x, y, t) at time layer k=9 obtained by recurrence formulae.

x/y 0 0.1 0.2 0.3 0.4

0 0 0 0 0 0

0.1 0 −0.0226 −0.0231 −0.0173 −0.0092

0.2 0 −0.0403 −0.0415 −0.0311 −0.0164

0.3 0 −0.0555 −0.0572 −0.0428 −0.0226

0.4 0 −0.0654 −0.0673 −0.0504 −0.0266

0.5 0 −0.0689 −0.0709 −0.0531 −0.0281
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Table 2a. Values of the displacement component v(x, y, t)at time layer k=9 computed by elimination method.

x/y 0 0.1 0.2 0.3 0.4

0 0 0 0 0 0

0.1 0 −0.0243 −0.0433 −0.0595 −0.0698

0.2 0 −0.0239 −0.0429 −0.0588 −0.0690

0.3 0 −0.0176 −0.0315 −0.0431 −0.0506

0.4 0 −0.0093 −0.0166 −0.0227 −0.0266

0.5 0 0 0 0 0

Table 2b. Values of the displacement component v(x, y, t) at time layer k=9 obtained by recurrence formulae.

x/y 0 0.1 0.2 0.3 0.4

0 0 0 0 0 0

0.1 0 −0.0243 −0.0432 −0.0592 −0.0696

0.2 0 −0.0241 −0.0431 −0.0590 −0.0693

0.3 0 −0.0179 −0.0320 −0.0438 −0.0514

0.4 0 −0.0095 −0.0170 −0.0233 −0.0274

0.5 0 0 0 0 0

Table 3a. Temperature T (x, y, t) at time layer k=9 computed by elimination method.

x/y 0 0.1 0.2 0.3 0.4

0 0 0 0 0 0

0.1 0 2.3571 4.4646 6.1562 7.2508

0.2 0 4.4646 8.3440 11.4176 13.3887

0.3 0 6.1562 11.4176 15.5730 18.2324

0.4 0 7.2508 13.3888 18.2324 21.3299

0.5 0 7.6292 14.0664 19.1450 22.3921

Table 3b. Temperature T (x, y, t) at time layer k=9 obtained by recurrence formulae.

x/y 0 0.1 0.2 0.3 0.4

0 0 0 0 0 0

0.1 0 2.3658 4.1703 5.6840 6.6749

0.2 0 4.4894 7.9596 10.8524 12.7438

0.3 0 6.3739 11.3082 15.4204 18.1083

0.4 0 7.6537 13.5848 18.5268 21.7562

0.5 0 8.1867 14.5362 19.8262 23.2823

Comparison of numerical values of displacement components and temperature obtained by

the elimination method (Table 1a, Table 2a, Table 3a) and recurrence formulae (Table 1b, Table

2b, Table 3b) clearly demonstrates its tight coincidence.

4. Conclusions

For two-dimensional coupled thermodynamic boundary value problems, explicit and implicit

finite difference schemes were constructed. Obtained explicit and implicit schemes were solved

using recurrence formulae and elimination method, respectively. A comparison of obtained

numerical results by those two methods shows a good coincidence. The above mentioned meth-

ods may be easily applied for numerical solution of three dimensional thermodynamic coupled

problems for elastic and plastic bodies.
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