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AN INVERSE BOUNDARY VALUE PROBLEM FOR THE

BOUSSINESQ-LOVE EQUATION WITH NONLOCAL INTEGRAL

CONDITION

N.SH. ISKENDEROV1, S.I. ALLAHVERDIYEVA2

Abstract. The work is devoted to the study of the solvability of an inverse boundary value

problem with an unknown time-dependent coefficient for the Boussinesq-Love equation with

Nonlocal Integral Condition. The goal of the paper consists of the determination of the unknown

coefficient together with the solution. The problem is considered in a rectangular domain. The

definition of the classical solution of the problem is given. First, the given problem is reduced to

an equivalent problem in a certain sense. Then, using the Fourier method the equivalent problem

is reduced to solving the system of integral equations. Thus, the solution of an auxiliary inverse

boundary value problem reduces to a system of three nonlinear integro-differential equations

for unknown functions. A concrete Banach space is constructed. Further, in the ball from the

constructed Banach space by the contraction mapping principle, the solvability of the system

of nonlinear integro-differential equations is proved. This solution is also a unique solution to

the equivalent problem. Finally, by equivalence, the theorem of existence and uniqueness of a

classical solution to the given problem is proved.
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tion, existence, uniqueness.
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1. Introduction

There are many cases where the needs of the practice bring about the problems of determining

coefficients or the right hand side of differential equations from some knowledge of its solutions.

Such problems are called inverse boundary value problems of mathematical physics. Inverse

boundary value problems arise in various areas of human activity such as seismology, mineral

exploration, biology, medicine, quality control in industry etc., which makes them an active field

of contemporary mathematics. Inverse problems for various types of PDEs have been studied in

many papers. Among them we should mention the papers of A.N. Tikhonov [8], M.M. Lavrentyev

[4, 5], V.K. Ivanov [2] and their followers. For a comprehensive overview, the reader should see

the monograph by A.M. Denisov [1]. In this paper, we prove existence and uniqueness of the

solution to an inverse boundary value problem for the Boussinesq-Love equation modeling the

longitudinal waves in an elastic bar with the transverse inertia.
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2. Problem statement and its reduction to an equivalent problem

Let T > 0 be some fixed number and denote byDT = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T}. Consider
the one-dimensional inverse problem of identifying an unknown pair of functions {u(x, t), a(t)}
for the following Boussinesq-Love equation [7]

utt(x, t)− uttxx(x, t)− αutxx(x, t)− βuxx(x, t) = a(t)u(x, t) + f(x, t), (1)

with the nonlocal initial conditions

u(x, 0) = φ(x), ut(x, 0) =

T∫
0

p(t)u(x, t)dt+ ψ(x), x ∈ [0, 1]. (2)

Neumann boundary condition

ux(0, t) = 0, t ∈ [0, T ], (3)

nonlocal integral condition
1∫

0

u(x, t)dx = 0, t ∈ [0, T ], (4)

and overdetermination condition

u(0, t) = h(t), t ∈ [0, T ], (5)

where α > 0, β > 0 are known numbers, f(x, t), φ(x), ψ(x), p(t), and h(t) are given sufficiently

smooth functions of x ∈ [0, 1] and t ∈ [0, T ].

We introduce the following set of functions

C̃(2,2)(DT ) = {u(x, t) : u(x, t) ∈ C2(DT ), uttxx(x, t) ∈ C(DT )}.

Definition 2.1. The pair {u(x, t), a(t)} is said to be a classical solution to the problem (1)-(5),

if the functions u(x, t) ∈ C̃(2,2)(DT ) and a(t) ∈ C[0, T ] satisfies an equation (1) in the region DT ,

the condition (2) on [0, 1], and the statements (3)-(5) on the interval [0, T ] ordinary meaning.

In order to investigate the problem (1) - (5), first we consider the following auxiliary problem

y′′(t) = a(t)y(t), t ∈ [0, T ], (6)

y(0) = 0, y′(0) =

T∫
0

p(t)y(t)dt, (7)

where p(t), a(t) ∈ C[0, T ] are given functions, and y = y(t) is desired function. Moreover, by the

solution of the problem (6), (7), we mean a function y(t) belonging to C2[0, T ] and satisfying

the conditions (6), (7) in the usual sense.

Lemma 2.1. [6] Assume that p(t) ∈ C[0, T ], a(t) ∈ C[0, T ], ∥a(t)∥C[0,T ] ≤ R = const, and

the condition (
∥p(t)∥C[0,T ] +

1

2
R

)
T 2 < 1,

holds. Then the problem (6)-(7) has a unique trivial solution.

Now, along with the inverse boundary value problem (1)-(5), we consider the following auxil-

iary inverse boundary value problem: It is required to determine a pair {u(x, t), a(t)} of functions
u(x, t) ∈ C̃(2,2)(DT ) and a(t) ∈ C[0, T ] from relations (1)-(3), and

ux(1, t) = 0, t ∈ [0, T ], (8)

h′′(t)− uttxx(0, t)− αutxx(0, t)− βuxx(0, t) = a(t)h(t) + f(0, t), t ∈ [0, T ]. (9)
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The following lemma is valid.

Theorem 2.1. Suppose that φ(x), ψ(x) ∈ C1[0, 1], φ′(1) = 0, ψ′(1) = 0, p(t) ∈ C[0, T ], p(t) ≤

0, h(t) ∈ C2[0, T ], h(t) ̸= 0, t ∈ [0, T ], f(x, t) ∈ C(DT ),
1∫
0

f(x, t)dx = 0, t ∈ [0, T ], α2

4 −β > 0,

and the compatibility conditions

1∫
0

φ(x)dx = 0,

1∫
0

ψ(x)dx = 0, (10)

h(0) = φ(0), h′(0) =

T∫
0

p(t)h(t)dt+ ψ(0) (11)

hold. Then the following assertions are valid:

(i) each classical solution {u(x, t), a(t)} of the problem (1)-(5) is a solution of problem (1)-

(3), (8), (9), as well as;

(ii) each solution {u(x, t), a(t)} of the problem 1)-(3), (8), (9), if(
∥p(t)∥C[0,T ] +

1

2
∥a(t)∥C[0,T ]

)
T 2 < 1, (12)

is a classical solution of problem (1)-(5).

Proof. Let {u(x, t), a(t)} be any classical solution to problem (1)-(5). By integrating both sides

of equation (1) with respect to x from 0 to 1, we find

d2

dt2

1∫
0

u(x, t)dx− (uttx(1, t)− uttx(0, t))− α(utx(1, t)− utx(0, t))−

−β(ux(1, t)− ux(0, t)) = a(t)

1∫
0

u(x, t)dx+

1∫
0

f(x, t)dx, t ∈ [0, T ]. (13)

Using the fact that
1∫
0

f(x, t)dx = 0, t ∈ [0, T ], and the conditions (3),(4), we find that:

uttx(1, t) + αutx(1, t) + βux(1, t) = 0, t ∈ [0, T ]. (14)

It’s obvious that the general solution of equation (14) has the form:

ux(1, t) = c1e
µ1t + c2e

µ2t, (15)

where c1, c2 are the unknown numbers and

µ1 = −α
2
−
√
α2

4
− β, µ2 = −α

2
+

√
α2

4
− β.

By (2) and φ′(1) = 0, ψ′(1) = 0 we obtain:

ux(1, 0) = φ′(1) = 0, utx(1, 0)−
T∫
0

p(t)ux(1, t)dt = ψ′(1) = 0. (16)

Using (15) and (16) we obtain

c1 + c2 = 0, c1µ1 + c2µ2 −
T∫
0

p(t)(c1e
µ1t + c2e

µ2t)dt = 0.
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Hence we find:

c1 = −c2, c2

µ2 − µ1 −
T∫
0

p(t)(eµ2t − eµ1t)dt

 = 0.

By p(t) ≤ 0, µ2 − µ1 = 2
√

α2

4 − β > 0, from the latter relations we have c1 = c2 = 0.

Putting the value of c1 = c2 = 0 in (15), we get that the problem (14), (16) has only the

trivial solution, i.e. we conclude that the statement (8) is true.

Setting x = 0 in equation (1), we find

utt(0, t)− uttxx(0, t)− αutxx(0, t)− βuxx(0, t) = a(t)u(0, x) + f(0, t), t ∈ [0, T ]. (17)

Taking into consideration h(t) ∈ C2[0, T ] and twice differentiating (5) we have

utt(0, t) = h′′(t), t ∈ [0, T ]. (18)

From (17), taking into account (5) and (18), we conclude that the relation (9) is fulfilled.

Now, assume that {u(x, t), a(t)} is the solution to problem (1)-(3), (8), (9). Then from (13),

taking into account the condition
1∫
0

f(x, t)dx = 0, t ∈ [0, T ] and relations (3), (8) we have

d2

dt2

1∫
0

u(x, t)dx = a(t)

1∫
0

u(x, t)dx, t ∈ [0, T ]. (19)

Furthermore, from (2) and (10) it is easy to see that

1∫
0

u(x, 0)dx =
1∫
0

φ(x)dx = 0,

1∫
0

ut(x, 0)dx−
T∫
0

p(t)

(
1∫
0

u(x, t)dx

)
dt =

1∫
0

(
ut(x, 0)−

T∫
0

p(t)u(x, t)dt

)
dx =

1∫
0

ψ(x)dx = 0.

(20)

Since, by Lemma 2.1., problem (19), (20) has only a trivial solution. It means that

1∫
0

u(x, t)dx = 0, t ∈ [0, T ],

i.e. the condition (4) is satisfied.

Next, from (9) and (17), we obtain

d2

dt2
(u(0, t)− h(t)) = a(t)(u(0, t)− h(t)), 0 ≤ t ≤ T. (21)

By virtue of (2) and the compatibility conditions (11), we have

u(0, 0)− h(0) = φ(0)− h(0) = 0,

ut(0, 0)− h′(0)−
T∫
0

p(t)(u(0, t)− h(t))dt = ut(0, 0)−
T∫
0

p(t)u(0, t)dt−

−

h′(0)− T∫
0

p(t)h(t)dt

 = ψ(0)−

h′(0)− T∫
0

p(t)h(t)dt

 = 0. (22)

Using Lemma 2.1., and relations (21), (22), we conclude that condition (5) is satisfied. �
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3. Existence and uniqueness of the classical solution

We seek the first component u(x, t) of classical solution {u(x, t), a(t)} of the problem (1)-(3),

(8), (9) in the form

u(x, t) =

∞∑
k=0

uk(t) cosλkx, λk = kπ, (23)

where

uk(t) = mk

1∫
0

u(x, t) cosλkxdx, k = 0, 1, 2, . . . ,

and

mk =

{
1, k = 0,

2, k = 1, 2, . . . .

Then applying the formal scheme of the Fourier method, from (1) and (2) we have

(1 + λ2k)u
′′
k(t) + αλ2ku

′
k(t) + βλ2kuk(t) = Fk(t;u, a), k = 0, 1, 2 . . . ; 0 ≤ t ≤ T, (24)

uk(0) = φk, u
′
k(0) = ψk +

T∫
0

p(t)uk(t)dt, k = 0, 1, 2 . . . , (25)

where

Fk(t;u, a) = fk(t) + a(t)uk(t), fk(t) = mk

1∫
0

f(x, t) cosλkxdx,

φk = mk

1∫
0

φ(x) cosλkxdx, ψk(t) = mk

1∫
0

ψ(x) cosλkxdx, k = 0, 1, 2, . . . .

It is obvious that λ2k < 1 + λ2k < 2λ2k (k = 1, 2, ...). Therefore

α2

8
− β <

α2λ2k
4(1 + λ2k)

− β <
α2

4
− β (k = 1, 2, ...).

Now, suppose that α2

8 − β > 0. Solving the problem (24)-(25), we find

u0(t) = φ0 + t

ψ0 +

T∫
0

p(t)u0(t)dt

+

t∫
0

(t− τ)F0(τ ;u, a)dτ, (26)

uk(t) =
1

γk

(µ2keµ1kt − µ1ke
µ2kt
)
φk +

(
eµ2kt − eµ1kt

)ψk +

T∫
0

p(t)uk(t)dt

+

+
1

1 + λ2k

t∫
0

Fk(τ ;u, a)
(
eµ2k(t−τ) − eµ1k(t−τ)

)
dτ

 (0 ≤ t ≤ T ; k = 1, 2, ...), (27)

where

µ1k = −
αλ2k

2(1 + λ2k)
− λk

√
α2λ2k

4(1 + λ2k)
2
− β

1 + λ2k
,

µ2k = −
αλ2k

2(1 + λ2k)
+ λk

√
α2λ2k

4(1 + λ2k)
2
− β

1 + λ2k
,
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γk = µ2k − µ1k = 2λk

√
α2λ2k

4(1 + λ2k)
2
− β

1 + λ2k
.

Differentiating (27) twice, we get:

u′k(t) =
1

γk

[
µ1kµ2k

(
eµ1kt − eµ2kt

)
φk +

(
µ2ke

µ2kt − µ1ke
µ1kt
)ψk +

T∫
0

P (t)uk(t)dt

+

+
1

1 + λ2k

t∫
0

Fk(τ ;u, a)
(
µ2ke

µ2k(t−τ)− µ1ke
µ1k(t−τ)

)
dτ
]
(0 ≤ t ≤ T ; k = 1, 2, ...), (28)

u′′k(t) =
1

γk

[
µ1kµ2k

(
µ1ke

µ1kt − µ2ke
µ2kt
)
φk+

+
(
µ22ke

µ2kt − µ21ke
µ1kt
)
ψk +

1

1 + λ2k

t∫
0

Fk(τ ;u, a)
(
µ22ke

µ2k(t−τ)−

− µ21ke
µ1k(t−τ)

)
dτ
]
+

1

1 + λ2k
Fk(t;u, a) (k = 1, 2, ...). (29)

To determine the first component of the classical solution to the problem (1)-(3), (8), (9) we

substitute the expressions uk(t) (k = 0, 1, ...) into (23) and obtain

u(x, t) = φ0 + t

ψ0 +

T∫
0

p(t)u0(t)dt

+

t∫
0

(t− τ)F0(τ ;u, a)dτ+

+

∞∑
k=1

 1

γk

(µ2keµ1kt − µ1ke
µ2kt
)
φk +

(
eµ2kt − eµ1kt

)ψk +

T∫
0

p(t)uk(t)dt

+

+
1

1 + λ2k

t∫
0

Fk(τ ;u, a)
(
eµ2k(t−τ) − eµ1k(t−τ)

)
dτ

 cosλkx. (30)

It follows from (9) and (23) that

a(t) = [h(t)]−1

{
h′′(t)− f(0, t) +

∞∑
k=1

(λ2ku
′′
k(t) + αλ2ku

′
k(t) + βλ2kuk(t))

}
. (31)

By (24) and (29) we have:

λ2ku
′′
k(t) + αλ2ku

′
k(t) + βλ2kuk(t) = Fk(τ ;u, a)− u′′k(t) =

= − 1

γk

µ1kµ2k (µ1keµ1kt − µ2ke
µ2kt
)
φk +

(
µ22ke

µ2kt − µ21ke
µ1kt
)ψk +

T∫
0

p(t)uk(t)dt

+

+
1

1 + λ2k

t∫
0

Fk(τ ;u, a)
(
µ22ke

µ2k(t−τ)− µ21ke
µ1k(t−τ)

)
dτ

+

+
λ2k

1 + λ2k
Fk(t;u, a) (0 ≤ t ≤ T ; k = 1, 2, ...). (32)

By substituting expression (32) into (31), we obtain the equation for the second component

of the solution to problem (1) - (3), (8), (9):

a(t) = [h(t)]−1{h′′(t)− f(0, t)+
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−
∞∑
k=1

 1

γk

µ1kµ2k (µ1keµ1kt − µ2ke
µ2kt
)
φk +

(
µ22ke

µ2kt − µ21ke
µ1kt
)ψk +

T∫
0

p(t)uk(t)dt

+

+
1

1 + λ2k

t∫
0

Fk(τ ;u, a)
(
µ22ke

µ2k(t−τ)− µ21ke
µ1k(t−τ)

)
dτ
]
−

λ2k
1 + λ2k

Fk(t;u, a)

]}
. (33)

Thus, the solution of problem (1) - (3), (8), (9) was reduced to the solution of system (30),

(33) with respect to the unknown functions u(x, t) and a(t).

Lemma 3.1. If {u(x, t), a(t)} is any solution to problem (1) - (3), (8), (9), then the functions

uk(t) = mk

1∫
0

u(x, t) cosλkxdx, k = 0, 1, 2, . . . ,

satisfy the system (26), (27) in C[0, T ].

It follows from Lemma 2.2. that

Corollary 3.1. Let system (30)-(33) have a unique solution. Then problem (1) - (3), (8), (9)

cannot have more than one solution, i.e. if the problem (1) - (3), (8), (9) has a solution, then

it is unique.

With the purpose to study the problem (1) - (3), (8), (9), we consider the following functional

spaces.

Denote by B3
2,T [8] a set of all functions of the form

u(x, t) =

∞∑
k=0

uk(t) cosλkx, λk = kπ,

considered in the region DT , where each of the function uk(t) (k = 0, 1, 2, ...) is continuous over

an interval [0, T ] and satisfies the following condition:

J(u) ≡ ∥u0(t)∥C[0,T ] +

{ ∞∑
k=1

(λ3k ∥uk(t)∥C[0,T ])
2

} 1
2

< +∞.

The norm in this set is defined by

∥u(x, t)∥B3
2,T

= J(u).

It is known that B3
2,T is Banach space.

Obviously, E3
T = B3

2,T × C[0, T ] with the norm

∥z(x, t)∥E3
,T

= ∥u(x, t)∥B3
2,T

+ ∥a(t)∥C[0,T ]

is also Banach space.

Now, consider the operator

Φ(u, a) = {Φ1(u, a),Φ2(u, a)},

in the space E3
T , where

Φ1(u, a) = ũ(x, t) ≡
∞∑
k=0

ũk(t) cosλkx, Φ2(u, a) = ã(t)

and the functions ũ0(t), ũk(t), k = 1, 2, ..., and ã(t) are equal to the right-hand sides of (26),

(27), and (33), respectively.



N.SH. ISKENDEROV, S.I. ALLAHVERDIYEVA: AN INVERSE BOUNDARY VALUE PROBLEM FOR... 233

It is easy to see that

µik < 0, eµikt < 1, eµik(t−τ) < 1, (i = 1, 2; 0 ≤ t ≤ T ; 0 ≤ τ ≤ t),

|µik| ≤ λk

(
αλk

2(1 + λ2k)
+

√
α2λ2k

4(1 + λ2k)
2
− β

1 + λ2k

)
≤

αλ2k
1 + λ2k

≤ α (i = 1, 2),

|µ1kµ2k| ≤
βλ2k

1 + λ2k
≤ β,

1

γk
=

1

2

√
λ2
k

1+λ2
k

(
α2λ2

k

4(1+λ2
k)

2 − β
) ≤ 1

2

√
1
2

(
α2

8 − β
) ≡ γ0.

Taking into account these relations, by means of simple transformations we find:

∥ũ0(t)∥C[0,T ] ≤ |φ0|+ T |ψ0|+ T 2 ∥p(t)∥C[0,T ] ∥u0(t)∥C[0,T ]+

+T
√
T

 T∫
0

|f0(τ)|2 dτ


1
2

+ T 2 ∥a(t)∥C[0,T ] ∥u0(t)∥C[0,T ] , (34)

( ∞∑
k=1

(λ3k ∥ũk(t)∥C[0,T ])
2

) 1
2

≤
√
5αγ0

( ∞∑
k=1

(λ3k |φk|)2
) 1

2

+

+
√
5γ0

( ∞∑
k=1

(λ3k |ψk|)2
) 1

2

+ γ0
√
5T

 T∫
0

∞∑
k=1

(λk |fk(τ)|)2dτ


1
2

+

+
√
5Tγ0(∥p(t)∥C[0,T ] + ∥a(t)∥C[0,T ])

( ∞∑
k=1

(λ3k ∥uk(t)∥C[0,T ])
2

) 1
2

, (35)

∥ã(t)∥C[0,T ] ≤
∥∥[h(t)]−1

∥∥
C[0,T ]

×

×

∥∥h′′(t)− f(0, t)
∥∥
C[0,T ]

+

( ∞∑
k=1

λ−2
k

) 1
2

2αβγ0( ∞∑
k=1

(λ3k |φk|)2
) 1

2

+

+2α2γ0

( ∞∑
k=1

(λ3k |ψk|)2
) 1

2

+ 2α2γ0T ∥a(t)∥C[0,T ]

( ∞∑
k=1

(λ3k ∥uk(t)∥C[0,T ])
2

) 1
2

+

+2α2γ0
√
T

 T∫
0

∞∑
k=1

(λk |fk(τ)|)2dτ


1
2

+ 2α2γ0T ∥a(t)∥C[0,T ]

( ∞∑
k=1

(λ3k ∥uk(t)∥C[0,T ])
2

) 1
2

+

+

( ∞∑
k=1

(λk ∥fk(t)∥C[0,T ])
2

) 1
2

+ ∥a(t)∥C[0,T ]

( ∞∑
k=1

(λ3k ∥uk(t)∥C[0,T ])
2

) 1
2

 . (36)

Suppose that the data for problem (1)-(3), (8), (9) satisfy the assumptions:

A) φ(x) ∈ C2[0, 1], φ′′′(x) ∈ L2(0, 1), φ
′(0) = φ′(1) = 0;

B) ψ(x) ∈ C2[0, 1], ψ′′′(x) ∈ L2(0, 1), ψ
′(0) = ψ′(1) = 0;

C) f(x, t), fx(x, t), fx(x, t) ∈ C(DT ), fxxx(x, t) ∈ L2(DT ), fx(0, t) = fx(1, t), 0 ≤ t ≤ T ;

D) p(t) ∈ C[0, T ], h(t) ∈ C2[0, T ], h(t) ̸= 0, 0 ≤ t ≤ T ;

E) α > 0, β > 0, α2

8 − β > 0.
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Then from (34)-(36) we correspondingly find

∥ũ0(t)∥C[0,T ] ≤ ∥φ(x)∥L2(0,1)
+ T ∥ψ(x)∥L2(0,1)

+ T
√
T ∥f(x, t)∥L2(DT )+

+T 2 ∥p(t)∥C[0,T ] ∥u0(t)∥C[0,T ] + T 2 ∥a(t)∥C[0,T ] ∥u0(t)∥C[0,T ] , (37){ ∞∑
k=1

(λ3k ∥ũk(t)∥C[0,T ])
2

} 1
2

≤
√
5αγ0

∥∥φ′′′(x)
∥∥
L2(0,1)

+
√
5γ0

∥∥ψ′′′(x)
∥∥
L2(0,1)

+

+γ0
√
5T ∥fx(x, t)∥L2(DT ) +

√
5Tγ0 ∥p(t)∥C[0,T ]

( ∞∑
k=1

(λ3k ∥uk(t)∥C[0,T ])
2

) 1
2

+

+
√
5Tγ0 ∥a(t)∥C[0,T ]

( ∞∑
k=1

(λ3k ∥uk(t)∥C[0,T ])
2

) 1
2

, (38)

∥ã(t)∥C[0,T ] ≤
∥∥[h(t)]−1

∥∥
C[0,T ]

∥∥h′′(t)− f(0, t)
∥∥
C[0,T ]

+

( ∞∑
k=1

λ−2
k

) 1
2

×

×
[
2αβγ0

∥∥φ′′′(x)
∥∥
L2(0,1)

+ 2α2γ0
∥∥ψ′′′(x)

∥∥
L2(0,1)

+ 2α2γ0
√
T ∥fx(x, t)∥L2(DT )+

+2α2γ0T (∥p(t)∥C[0,T ] + ∥a(t)∥C[0,T ])

( ∞∑
k=1

(λ3k ∥uk(t)∥C[0,T ])
2

) 1
2

+

+
∥∥∥∥fx(x, t)∥C[0,T ]

∥∥∥
L2(0,1)

+ ∥a(t)∥C[0,T ]

( ∞∑
k=1

(λ3k ∥uk(t)∥C[0,T ])
2

) 1
2

 . (39)

It follows from (32) and (33) that

∥ũ(x, t)∥B3
2,T

≤ A1(T ) +B1(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B3
2,T

+ C1(T ) ∥u(x, t)∥B3
2,T
, (40)

where

A1(T ) = ∥φ(x)∥L2(0,1)
+ T ∥ψ(x)∥L2(0,1)

+ T
√
T ∥f(x, t)∥L2(DT )+

+
√
5αγ0

∥∥φ′′′(x)
∥∥
L2(0,1)

+
√
5γ0

∥∥ψ′′′(x)
∥∥
L2(0,1)

+ γ0
√
5T ∥fx(x, t)∥L2(DT ) ,

B1(T ) = T 2 + γ0
√
5T,

C1(T ) = T (T +
√
5γ0) ∥p(t)∥C[0,T ] .

Further from (34), we may also write

∥ã(t)∥C[0,T ] ≤ A2(T ) +B2(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B3
2,T

+ C2(T ) ∥u(x, t)∥B3
2,T
, (41)

where

A2(T ) =
∥∥[h(t)]−1

∥∥
C[0,T ]

{
∥∥h′′(t)− f(0, t))

∥∥
C[0,T ]

+

( ∞∑
k=1

λ−2
k

) 1
2

×

×
[
2αβγ0

∥∥φ′′′(x)
∥∥
L2(0,1)

+ 2α2γ0
∥∥ψ′′′(x)

∥∥
L2(0,1)

+

+2α2γ0
√
T ∥fx(x, t)∥L2(DT ) +

∥∥∥∥fx(x, t)∥C[0,T ]

∥∥∥
L2(0,1)

]}
,

B2(T ) =
∥∥[h(t)]−1

∥∥
C[0,T ]

( ∞∑
k=1

(λ−2
k )

) 1
2

(2α2γ0T + 1),
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C2(T ) =
∥∥[h(t)]−1

∥∥
C[0,T ]

( ∞∑
k=1

(λ−2
k )

) 1
2

T ∥p(t)∥C[0,T ] .

From the inequalities (39) and (40), we conclude that

∥ũ(x, t)∥B3
2,T

+ ∥ã(t)∥C[0,T ] ≤ A(T ) +B(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B3
2,T

+C(T ) ∥u(x, t)∥B3
2,T
, (42)

where

A(T ) = A1(T ) +A2(T ), B(T ) = B1(T ) +B2(T ), C(T ) = C1(T ) + C2(T ).

Thus, we can prove the following theorem:

Theorem 3.1. Assume that statements A-E and the condition

(B(T )(A(T ) + 2) + C(T ))(A(T ) + 2) < 1, (43)

hold, then the problem (1)-(3), (8), (9) has a unique solution in the ball K = KR(∥z∥E3
T
≤ R ≤

A(T ) + 2) of the space E3
T .

Remark 3.1. Inequality (43) is satisfied for sufficiently small values of T .

Proof. In the space E3
T , consider the operator equation

z = Φz, (44)

where z = {u, a}, and the components Φi(u, a) (i = 1, 2), of operator Φ(u, a) defined by the

right sides of (30) and (33), respectively and the following inequalities hold:

∥Φz∥E3
T
≤ A(T ) +B(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B3

2,T
+ C(T ) ∥u(x, t)∥B3

2,T
≤

≤ A(T ) +B(T )R2 + C(T )R = A(T ) + (B(T )(A(T ) + 2) + C(T ))(A(T ) + 2), (45)

∥Φz1 − Φz2∥E3
T
≤ B(T )R(∥u1(x, t)− u2(x, t)∥B3

2,T
+ ∥a1(t)− a2(t)∥C[0,T ])+

+C(T ) ∥u1(x, t)− u2(x, t)∥B3
2,T
. (46)

Then it follows from (43), (45), and (46) that the operator Φ acts in the ball K = KR, and

satisfy the conditions of the contraction mapping principle. Therefore, the operator Φ has a

unique fixed point {z} = {u, a} in the ball K = KR which is a solution of equation (44); i.e. the

pair {u, a} is the unique solution of the systems (30) and (33) in K = KR.

Then the function u(x, t) as an element of space B3
2,T is continuous and has continuous

derivatives ux(x, t) and uxx(x, t) in DT .

Now, from (28) it is obvious that u′k(t) (k = 1, 2, ...) is continuous in [0, T ] and from the same

relation we get:( ∞∑
k=1

(λ3k
∥∥u′k(t)∥∥C[0,T ]

)2

) 1
2

≤ 2
√
3βγ0

∥∥φ′′′(x)
∥∥
L2(0,1)

+ 2
√
3α
∥∥ψ′′′(x)

∥∥
L2(0,1)

+

+2α
√
3T ∥fxxx(x, t)∥L2(DT ) + 2α

√
3T (∥p(t)∥C[0,T ] + ∥a(t)∥C[0,T ])

( ∞∑
k=1

(λ3k ∥uk(t)∥C[0,T ])
2

) 1
2

.

Hence, it follows that ut(x, t), utx(x, t), and utxx(x, t) are continuous in DT .

Next, from (24) it follows that u′′k(t) (k = 1, 2, ...) are continuous in [0, T ] and consequently

we have: Equation (24) gives( ∞∑
k=1

(λk
∥∥u′′k(t)∥∥C[0,T ]

)2

) 1
2

≤ 2α

( ∞∑
k=1

(λ3k
∥∥u′k(t)∥∥C[0,T ]

)2

) 1
2

+
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+2β

( ∞∑
k=1

(λ3k ∥uk(t)∥C[0,T ])
2

) 1
2

+ 2
∥∥∥∥fx(x, t) + a(t)ux(x, t)∥C[0,T ]

∥∥∥
L(0,1)

.

From the last relation it is obvious that ut(x, t), utx(x, t), and utxx(x, t) are continuous in DT .

It is easy to verify that equation (1) and conditions (2), (3), (8), (9) satisfy in the usual sense.

So, {u(x, t), a(t)}, is a solution of (1)-(3), (8), (9), and by Lemma 2 it is unique in the ball

K = KR. �

In summary, from Theorem 2.1 and Theorem 3.1, straightforward implies the unique solvabil-

ity of the original problem (1)-(5).

Theorem 3.2. Suppose that all assumptions of Theorem 3.1, and the conditions

1∫
0

φ(x)dx = 0,

1∫
0

ψ(x)dx = 0,

1∫
0

f(x, t)dx = 0, t ∈ [0, T ], p(t) ≤ 0, t ∈ [0, T ],

h(0) = φ(0), h′(0) =

T∫
0

p(t)h(t)dt+ ψ(0),

(
∥p(t)∥C[0,T ] +

1

2
(A(T ) + 2)

)
T < 1,

hold. Then problem (1)-(5) has a unique classical solution in the ball K = KR(∥z∥E3
T
≤ A(T )+2)

of the space E3
T .
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