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TWO-STAGE PROCEDURE OF H∞ - PARAMETERIZATION OF

STABILIZING CONTROLLERS APPLIED TO QUADROTOR FLIGHT

CONTROL

V.B. LARIN1, A.A. TUNIK2

Abstract. The problem of H∞− parameterization of stabilizing controllers for one class of

nonholonomic systems is considered. It includes the flight control systems of a quadrotor with

a certain structure, consisting of inner contours for stabilizing the module of the quadrotor

velocity vector and outer contours for control of this vector direction. Therefore, it is proposed

to apply the two-stage procedure of H∞− parameterization of stabilizing controllers to each

inner contour at the 1st stage and then to each outer contour at the 2nd stage. Simulation of

quadrotor planar circular reference track following in the calm and disturbed atmosphere proves

the viability of obtained results.
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1. Introduction and problem statement

Recently the problem of quadrotor flight control is considered in two aspects: the quadrotor

is considered as holonomic [5, 9, 10] and nonholonomic [7, 16] system. The advantages and

disadvantages of these approaches are considered in [7, 16], where it is stated, that for the

outdoor application the last one is preferable from the viewpoint of path planning. In this case,

the desired path is based on the space-indexed reference track using only spatial coordinates

of the waypoints (so-called ”waypoint navigation”). In the case of the holonomic system, it is

necessary to apply more complicated double indexed path planning based on space and time

indices for each waypoint. It is obvious, that motion control of the nonholonomic vehicle requires

stabilization of its velocity vector module and control of this vector direction. In [9, 10] the first

problem of stabilization of the quadrotor speed was solved via LQR-approach. Then the first

and the second problems were solved in [16] via the same approach. It is acceptable when it

is possible to neglect the inertia of the quadrotor motors. However, it does not work in many

practical cases [2, 7, 14], when taking into account the motor’s inertia is mandatory. As far as

the motor’s rotation rate is practically unobserved, the synthesis of flight control, in this case,

requires the application of some different methods. For the sake of control system simplicity, it

is preferable to apply for control law synthesis the linear matrix inequality (LMI) approach [1,

4, 8, 17], because it creates control law as the simplest static output feedback (SOF). Following

[16], the motion control system for each axis of the quadrotor in the nonholonomic case consists

of two contours: the inner contour for velocity control and the outer contour for position control.
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That is why we consider the two-stage procedure of synthesis: determination of SOF for inner

contour, and then a determination of SOF for outer contour considering the closed-loop system

with SOF, obtained at the 1st stage, as a new system for the 2nd stage.

In this paper instead of a well-known LMI approach, we used a parameterization of all sta-

bilizing H∞− static state-feedback (SSF) gains and their application to SOF design [6]. The

advantage of this approach from our point of view is the simplicity of its application because

the reiterative solution of the algebraic Riccati equation proposed in [6] is simpler than the LMI

reiterative solution proposed in [8, 17]. Flight control simulation for some practical models of

the quadrotor in the case of planar flight at the constant altitude proves the efficiency of the

proposed method. Although SOF synthesis for control of the quadrotor motion along each axis

was made for the linearized models, the simulation of the planar (circular) motion, involving

control systems for longitudinal and lateral axes simultaneously, was performed with all non-

linearities, which are immanent for the real system. The results of this simulation confirm the

viability of the proposed method.

2. Problem statement and algorithm for its solving

Consider the standard problem of the static output feedback (SOF) synthesis, which guaran-

tees H∞−the rejection of external disturbances [1, 4, 8, 17]. These control laws were successfully

applied to the flight control synthesis of various types of aerial vehicles [8, 17] and here it will

be illustrated by application to the quadrotor flight control. Previously the procedures of syn-

thesis were based on the application of LMI solution [1, 4, 8, 17]. Further development of this

approach produced a new result based on the solution of the algebraic Riccati equation (ARE)

[6]. In this case, we can create the same control strategy (SOF) with the same suppression of the

external disturbances H∞− norms. In the case of the quadrotor, we can formulate this problem

as follows.

As it was stated in [5, 9] the quadrotor flight control problem can be considered based on the

separation of its motions along 3 axes (longitudinal X, lateral Y , and vertical Z), taking into

account the symmetry of construction of this aerial vehicle about these axes.

Let the linearized mathematical model of the quadrotor, describing its linear motion along

the lateral axis Y , can be written in the following standard form [1, 8, 17]:

dχ

dt
(t) = Aχ (t) + Buu (t) + Bdd(t),υ (t) = Cχ (t) ,z(t) =

[ √
Q 0

0
√
R

] [
χ(t)

u(t)

]
. (1)

where χ,υ, and z are the state, output, and desired output vectors respectively. These vectors

χ and υ include the following components:

χ = [χ1, χ2, χ3, χ4, χ5]
T = [y, dy/dt, ϕ, p,∆Ω]T , υ = [y, dy/dt, ϕ, p]T . (2)

In expression (2) y, dy/dt are a position of a quadrotor on the Y-axis, and its linear velocity

along this axis, respectively; ϕ, p are roll angle and roll rate, and ∆Ω is the increment of the

rotation rate of quadrotor’ motors, located on the Y -axis and produced by a control input

u(t). Also, it is necessary to mention that d(t) is the exogenous disturbance, which is the

component of the turbulent wind velocity acting along the Y -axis. The numerical values of

matrices A ∈ R5×5, Bu ∈ R5×1, Bd ∈ R5×1, C ∈ R4×5 will be given later in the Case Study

section. Eventually, it is necessary to note that Q, R are the weighting matrices defining the

contributions of the state and control vectors in the desired output z. Their numerical values

will be selected during the procedure of synthesis. Taking into account the similarity of the
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model of quadrotor linear motion about the X-axis we do not consider this case for the sake of

brevity.

The final result of the control law synthesis for the model (1), based on the static output

feedback (SOF) approach [1, 4, 8, 17], looks like:

u (t) = −Kυ (t) = −KC χ(t), (3)

Figure 1. Scheme of the Y-axis control system.

where: K ∈ R1×4, C ∈ R4×5 K is the numerical feedback gain matrix. Now it is possible to

formulate the standard problem of suppressing external disturbanced by bounded L2- gain [1,

4, 8, 17] using gain matrix K. Let us have a well-known integral-quadratic performance index:

J =

∞∫
0

∥z (t)∥2 =
∞∫
0

(
χT Qx+ uT Ru

)
dt, (4)

which defines desired output signal z(t)in the system (1).

Then we define bounded system L2 gain as follows [1, 4, 8, 17]:

∞∫
0

∥z (t)∥2 dt

∞∫
0

∥d (t)∥2 dt
=

∞∫
0

(
χT Qχ+ uT Ru

)
dt

∞∫
0

(dT d) dt

≤ γ2. (5)

The problem consists of finding such SOF-gain K ∈ R1×4that satisfies inequality (5) for a

closed-loop system. Note, that the minimal possible value of γis denoted as γ∗. The gain matrix

K in (3) used to be found by LMI – approach (see, for instance [1, 4, 8, 17], where further

references are quoted).

Let us interpret this control problem when the quadrotor is considered as a nonholonomic

system. As it was shown in [16], such a control system, represented in Fig.1, might be considered

consisting of two loops: the inner loop for velocity control with command vector Vc and the outer

loop for suppressing the deviation of quadrotor position y on the lateral axis from the command

vector Yc. The state χV , output υV , and command Vc vectors for the inner loop have the

following forms respectively:

χV = [dy/dt, ϕ, p,∆Ω]T ,

υV = [dy/dt, ϕ, p]T , Vc = [vc, 0, 0]
T , (6)
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where vc is the velocity command signal. The state and output vectors for the outer loop are

the same as in the system (2), meanwhile, the command vector looks like this:

Yc = [yc, 0, 0, 0]
T , (7)

where yc is the command signal. Command signals appearing in (6) and (7) are generated

by reference track program. Note, that the two-loop structure of quadrotor flight control was

proposed also in [2].

Taking into account the control structure in Fig.1, it is possible to solve the problem (1-5)

for the quadrotor nonholonomic case by the consecutive two-stage procedure. The 1st stage

consists of the problem (1-5) solution for the inner loop with state and output vectors defined

by (6) and matrices AV ∈ R4×4, BV
u ∈ R4×1, BV

d ∈ R4×1, CV ∈ R3×1, QV ∈ R4×4in the system

(1), truncated correspondingly with vectors (6). The solution of the problem (1-5) results in

finding inner loop feedback gain matrix

KV = [KV
dy/dt,K

V
ϕ ,K

V
p ]. (8)

At the 2nd stage, the gain matrix (8) is used for the creation of the state-space model of the

closed-loop outer contour with matricesAout ∈ R5×5, Bout
u ∈ R5×1, Bout

d = Bd, C ∈ R4×5, which

includes inner contour with feedback gains (8). Then we apply to this partially closed-loop

system the procedure of synthesis based on the LMI-approach for finding feedback gain matrix

for the outer contour:

KY = [Ky,Kdy/dt,Kϕ,Kp], (9)

defining static output feedback for outer contour:

u (t) = −KY υ (t) = −KY C χ(t).

It is shown in [8, 17], that solution of problem (1-5) via LMI-approach requires multiple

iterative solutions of LMI system for a given problem to find SOF matrix gain Kin (3) satisfying

(5). From our point of view, this computational procedure is rather complicated. In [6] the

same problem solving was made via iterative solutions of the algebraic Riccati equation to find

parameterization of all static state feedback (SSF) H∞− gains and then its application to the

SOF – design. That is why it is possible to find solutions of the algebraic Riccati equations

(ARE) instead of the LMI solution, which essentially alleviates computational problems. This

statement can be summarized in the following theorem borrowed from [6]:

Consider a specified matrix Q ≥ 0 such that (A,Q1/2) is detectable, (A,Bu) is stabilizable, and

a specified value γ > γ∗. Then there exists a SOF gain K such that A0 ≡ (A − BuKC) is

asymptotically stable with bounded L2 gain, if and only if there exists a parameter matrix L such

that

KC = R−1(BT
u P + L), (10)

where is a solution to ARE [10] :

PA+ATP +Q+
1

γ2
PBdB

T
d P − PBuR

−1BT
u P + LTR−1L = 0.

Let K0 will be SSF-gain obtained after application of the LQR-procedure to a system (1) with

given matrices in Q,R (3) assuming that all state variables are measured, i.e. C = I5×5 in our
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case, this SSF-gain has size K0 ∈ R1×5. On the other hand, in our case, SOF –gain has the size

K ∈ R1×4 (see (3)), and from (10) it follows:

K = R−1(BT
u P + L)CT (C × CT )−1. (11)

It is proposed in [10] to use the singular value decomposition (SVD) of the matrix C:C =

USV T = U [S00]

[
V T
1

V T
2

]
: for the pseudo-inverse matrix C+ = CT (CCT )−1 and the SOF-gain

K calculation. Using this SVD, we obtain [6]:

C+ = V1(S0)
−1UT . (12)

To recalculate the gain matrix K in the gain matrix F it is proposed [6] to use the projection

onto null space perpendicular C, using the matrix

f = I − V2V
T
2 . (13)

After these preliminary remarks, we will present the algorithm proposed in [6], for the solution

of the aforementioned problem of control system design.

3. Algorithm for quadrotor flight control synthesis borrowed from [10]

Define: Matrices of quadrotor state-space model: A, Bu, Bd, C; matrices - projecting

matrices(12) and(13); constants γ ≥ γ∗(5), tol(≈ 0.001), n = 0.

(1) Solve the LQR problem for given (A, Bu, Q, R) and obtain SSF-gain K0 and ARE-

solution P0.

(2) Define the matrix Ã0 = A−BK0.

(3) n-th iteration: solve ARE for Pn:

Pn(Ãn) + (Ã−T
n )P +Q+KT

nRKn +
1

γ2
PnBdB

T
d Pn = 0

(4) Update Kn : Kn+1 = R−1(BT
u Pn + Ln)f

(5) Update Ln: Ln+1 = RKn −BTPn
(6) Update Ãn : Ãn+1 = Ãn −BKn+1

(7) Check convergence: if ∥Pn+1 − Pn∥ < tol, go to step 8; otherwise go to step 2 and set

(8) n = n+ 1.

(9) End. Set Kf = Kn+1and compute SOF gain K = Kf · C+based on the SSF-gainKf .

(10) Compute ∥Hzd(jω)∥∞ and ∥Hzd(jω)∥2 for system (1), (3) with SOF-gain K, obtained

at stage 8.

Now we will apply this algorithm for the solution of the (1-5) problem to find SOF-gains for

control of the longitudinal and lateral quadrotor motions and to apply these matrices for the

design of the quadrotor path following the control system.

4. Case study

In this item, we will use the linearized mathematical model (1, 2) of the real quadrotor

developed at the National Aviation University (Kiev). It has the following parameters: the total

mass of quadrotor ismQ= 5.5 kg, mass of single electromotor Foxtech X5010 KV288mem= 0.213

kg, length of the motor’s arm l =0.343 m, the mass of the battery and payload mbp= 4.65 kg,

the maximal value of the rotation rate of each electromotor Ωmax = 1809rad/ sec . This model

was developed based on quadrotor design technique proposed in [2, 11, 13-15]. Numerical values
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of matrices A, Bu, Bd, C appearing in (1) for control of quadrotor motion along Y -axis look as

follows:

A =


0 1 0 0 0

0 −0.28 9.81 0 0

0 0 0 1 0

0 0 0 0 13.51

0 0 0 0 −8.33

 , Bu =


0

0

0

0

10.42

 ,

Bd =


0

1

0.0285

0

0

 , C =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 (14)

Model (1), (14) for control of quadrotor motion along X-axis is the same as for Y -axis and

the difference consists of the inverse sign of the a23 entry of matrix A: a23 = −9.81, [5, 9, 10].

That is why we will describe the control design procedure only for Y -axis.

We will begin with a synthesis of control law for the inner loop to stabilize the module of

quadrotor linear velocity at the given level. In this case, state χ and output υ vectors (2) will

have the following form:

χ = [χ1, χ2, χ3, χ4, χ5]
T = [y, dy/dt, ϕ, p,∆Ω]T , υ = [y, dy/dt, ϕ, p]T . (15)

and matrices A, Bu, Bd, C will look like:

AV =


−0.28 9.81 0 0

0 0 1 0

0 0 0 13.51

0 0 0 −8.33

 , BuV =


0

0

0

10.42

 ,

BdV =


0

1

0.0285

0

 , CV =

 1 0 0 0

0 1 0 0

0 0 1 0

 . (16)

Choosing the weighting matrix QV , and scalar values RV , γ
∗, tol the algorithm of synthesis [6]

described above as follows:

QV = diag([3 · 107, 700, 7 · 106, 0]), RV = 3.7 · 104, γ∗ = 0.5, tol = 0.001,

and applying this algorithm for the outer loop, we will obtain the following results: SOF-gain

matrix KV = [25.85, 92.14, 16.61], eigenvalues of state propagation matrix of the closed-loop

system Eig = (−1.36± j48.01,−2.94± j2.89), minimal value of L2 -gain in (5) λ∗ = 0.37.

Now we use the gain matrix KV for closing the inner loop to obtain the resulting system with

an inner closed-loop contour. Further, we apply the algorithm developed in [6] to the system

under consideration to perform the second stage of the entire synthesis procedure, i.e. finding

outer feedback for position control of quadrotor. Choosing weighting matrix Q, and scalar values

R, γ∗, tol for the 2nd stage of the algorithm as follows:

Q = diag
([
3 · 105, 2.5 · 104, 7.5 · 104, 2.5 · 105

])
, R = 103, γ∗ = 0.5, tol = 0.001,



V.B. LARIN, A.A. TUNIK: TWO-STAGE PROCEDURE OF H∞ - PARAMETERIZATION... 205

and applying this algorithm for the outer loop, we will obtain the following results: SOF-gain

matrix KY = [17.32, 6.67, 33.13, 7.87], eigenvalues of state propagation matrix of the closed-

loop system Eig = (−1.59 ± j58.43,−2.415 ± j2.42,−0.599), minimal value of L2-gain in (5)

λ∗ = 0.37. Fig.2 shows simulation results of quadrotor motion control along the Y -axis.

Figure 2. Results of simulation of motion control along the Y-axis: a) following command signal (black line) by

quadrotor (grey, dash-dot line), b) transient process of velocity, c) transient process of roll angle, d) transient

process of rotation rate increment of electromotor.

As it was mentioned above, results of synthesis of control law for motion control along the X-axis

differ from the previous case only by signs of entries to the SOF-gain matrices:

KV = [−25.85, 92.14, 16.61];KX = [−17.32,−6.67, 33.13, 7.87].

At this stage, it is possible to combine these motion control systems for the quadrotor path

following control in the horizontal plane, assuming that it flies at a constant altitude.

First of all, we have mentioned that the procedure of synthesis of control laws for each axis

based on the linearized models. Meanwhile, the simulation of path-following control uses all

nonlinearities, which are immanent to the real system. These include the nonlinear intercon-

nections between motions along the X-axis and Y-axis and saturation of the electro motors

electronic speed control. The nonlinear interconnections appear in the initial mathematical

model as follows [5, 9, 10, 16]:

d2x

dt2
= −[

µ

mQ

dx

dt
+ g

tan θ

cosϕ
] · cosψ, d2y

dt2
= −[

µ

mQ

dy

dt
− g tanϕ] · sinψ, (17)

where µ is the coefficient defining the drag force [11],mQ is the total mass of the quadrotor, and

ψ is the heading angle of the quadrotor. Fig.3 presents a block diagram of the path following

guidance system (GS) of the quadrotor in the horizontal plane.
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Figure 3. Block diagram of path following system in the horizontal plane.

In Fig.3 RT block represents the reference track generator producing command signals to

GS and the heading control system ψ − con. GS determines the errors between the reference

track and the actual position of the quadrotor and produces command signals XC , YC to motion

control systems X − con and Y − con. The mathematical model of the heading control system

for the aforementioned quadrotor has the following form [2, 11, 13-15]:

χ = [ψ, r,∆Ω]T , υ = [ψ, r]T ,

dχ

dt
=

 0 1 0

0 0 8.064

0 0 −8.33

χ+

 0

0

0.57

uψ, υ =

[
1 0 0

0 1 0

]
χ, (18)

uψ = −Kψυ,

where static output feedback is: Kψ = [kψ, kr] = [20, 15], and r is the heading rate.

In GS we used the guidance control law for planar circular UAV motion, which was proposed in

[12] and based on UAV kinematics and geometrical properties trajectory. It has the following

form:

UG = keetr + kėėtr + k0, (19)

where UGis the control output of GS, etr, ėtr stands for cross-track error and error rate. The

radiusRC = 160m of RT-circle, UAV centripetal acceleration and velocity, and pseudo-target

lead for line-of-sight from UAV to the reference track define gains ke, kė [12]. The term k0 is

defined by the centripetal acceleration of the quadrotor during circular motion [12] and it is

equal to k0 = kw
V 2
com
RC g

, where Vcom is the command velocity; g is the gravity acceleration, and kw
is a weighting coefficient. In our case the gains are equal to: ke = 0.1,kė = 0.5, and the constant

term equals k0 = 0.005. For the case of quadcopter control action (19) must be projected on X

and Y axes:

XC = UG cosψ, YC = UG sinψ. (20)

Control actions (20) determine the direction of the velocity vector of the quadrotor required for

following the circular path. Fig.4 represents simulation results of the quadrotor path following

in the condition of a calm atmosphere.
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Figure 4. Simulation of the quadrotor path following in the calm atmosphere: a) quadrotor path (grey, dash-dot

line) and reference track (black, solid line), b) roll angle (black line) and pitch angle (grey line) in deg.

Fig. 5 represents results of simulation of quadrotor path following, using Dryden model of

the moderately disturbed atmosphere at low altitude [3]. As it was shown from Figures 4

and 5, proposed control laws provide acceptable accuracy of path following (2.2% in the calm

atmosphere and practically the same in the disturbed atmosphere), effective suppressing of the

atmospheric disturbance and acceptable values of the pitch and roll deflections (10o in the calm

atmosphere and 20o in the disturbed atmosphere).

Figure 5. Simulation of the quadrotor path following in the disturbed atmosphere: a) quadrotor path (grey,

dashed line) and reference track (black, solid line) in m, b) roll angle (black line) and pitch angle (grey line) in ,

c) cross-track error in the calm atmosphere (in m, black line) and the same error in the disturbed atmosphere

(in m, grey line).

5. Conclusions

1. To simplify the solution of the quadrotor path planning and the path following problems; it

is expedient in many practical cases to design flight control systems, considering quadrotor as a

nonholonomic system. In this case, it is necessary to synthesize control laws for the stabilization

of the module of the velocity vector and for control of its direction.

2. Following the peculiarities of quadrotor flight control, it is acceptable to design control laws

for three spatial axes separately. Therefore, for planar motion at the constant altitude, it is

possible to synthesize identical control systems for motion control along the X- and Y-axes.

3. For the sake of control laws’ simplicity, it is desirable to choose them as the static output

feedback (SOF) gains. The most effective approach for the synthesis of SOF-gains is the H∞−
parameterization of all stabilizing controllers, based on the iterative solutions of Riccati algebraic

equations. This approach is utilized in the two-stage procedure for control laws design, where

the inner contour constitutes the first stage of the design for velocity stabilization, meanwhile,
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the second stage implies the position control.

4. Simulation of quadrotor flight in calm and disturbed atmosphere illustrated the efficiency of

proposed control algorithms.
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