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FOLIATION THEORY AND ITS APPLICATIONS∗

A.YA. NARMANOV1, G. KAYPNAZAROVA2

Abstract. Subject of present paper is the review of results of authors on foliation theory and
applications of foliation theory in control systems. The paper consists of two parts. In the first
part the results of authors on foliation theory are presented, in the second part the results on
applications of foliation theory in the qualitative theory of control systems are given. In paper
everywhere smoothness of a class C∞ is considered.
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1. Introduction

The foliation theory is a branch of the geometry which has arisen in the second half of the XX-
th century on a joint of ordinary differential equations and the differential topology. Basic works
on the foliation theory belong to the French mathematicians A. Haefliger [8], [9], G. Ehresman
[5], [6], G. Reeb [45], [46], H. Rosenberg [48], [49], G. Lamoureux [21], [22], R. Langevin [23],
[24]. Important contribution to foliation theory was made by known mathematicians - as well
as I. Tamura [53], R. Herman [10]-[13], T. Inaba [14], [15], W. Turston [54], [55], P. Molino [26],
P. Novikov [42], Ph. Tondeur [56], [57], B. Reinhart [47]. Now the foliation theory is intensively
developed, has wide applications in various areas of mathematics - such, as the optimal control
theory, the theory of dynamic polysystems. There are numerous researches on the foliation
theory.

The review of the last scientific works on the foliation theory and very big bibliography is
presented in work of Ph. Tondeur [57].

2. Topology of foliations

Definition 2.1. Let (M, A) be a smooth manifold of dimension n, where A is a Cr atlas, r ≥ 1,
0 < k < n. A family F = {Lα : α ∈ B} of path-wise connected subsets of M is called k-
dimensional Cr− foliation of if it satisfies to the following three conditions:

FI :
⋃

α∈B

Lα = M ;

FII : for every α, β ∈ B if α 6= β, then Lα
⋂

Lβ = ∅;
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FIII : For any point p ∈ M there exists a local chart ( local coordinate system ) (U,ϕ) ∈
A, p ∈ U so that if U

⋂
Lα 6= ∅ for some α ∈ B the components of ϕ(U

⋂
Lα) are following

subsets of parallel affine planes

{(x1, x2, ..., xn) ∈ ϕ(U) : xk+1 = ck+1, xk+2 = ck+2, ..., xn = cn}
where numbers ck+1, ck+2, ..., cn are constant on components (Figure-1,[53], p.121).

The most simple examples of a foliation are given by integral curves of a vector field and by
level surfaces of differentiable functions. If the X vector field without singular points is given on
manifold M under the theorem of straightening of a vector field (under the theorem of existence
of the solution of the differential equation) integral curves generate one-dimensional foliation on
M .

Figure 1

Let M be a smooth manifold of dimension n, f : M → R1 be a differentiable function. Let
p0 ∈ M ,f(p0) = c0 and the level set L = {p ∈ M : f(p) = c0} does not contain critical
points. Then the level set is a smooth submanifold of dimension n − 1. If we will assume that
differentiable function has no critical points, partition of M into level surfaces of function is a
n − 1- dimensional foliation (codimension one foliation).Codimension one foliations generated
by level surfaces were studied in papers [2],[17],[18], [19],[30], [31], [32], [47], [57]. The following
theorem gives to us a simple example of foliation.

Theorem 2.1. Let f : M → N be a differentiable mapping of the maximum rank, where M is a
smooth manifold of dimension n, N is a smooth manifold of dimension m, where n > m. Then
for each point q ∈ N a level set Lq = {p ∈ M : f(p) = f(q)} is a manifold of dimension n−m
and partition of M into connection components of the manifolds Lq is a n − m- dimensional
foliation.

Using the condition 3 of definition 2.1 it is easy to establish that there is a differential structure
on each leaf such that a leaf is immersed k-dimensional submanifold of M , i.e the canonical
injection is a immersing map(a map of the maximum rank). Thus on each leaf there are two
topology: the topology τM induced from M and it’s own topology τF as a submanifold . These
two topologies are generally different. The topology τF is stronger than topology τM , i.e. each
open subset of Lα in topology τM is open in τF .
A leaf Lα is called compact if (Lα, τF ) is compact topological space. It is obvious that the
compact leaf is a compact subset of manifold M . The leaf is Lα called as proper if the topology
τF coincides with the topology τM induced from M .If these two these topology on Lα do not
coincide, the leaf is called a non- proper leaf. It is easy to prove that the compact leaf is
proper leaf. In work [1] the following assertion is proved which takes place for foliations with
singularities too which we will discuss in the second part of this paper.

Proposition 2.1. If a leaf is a closed subset of M then it is a proper leaf.
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Let L be a leaf of F . Point y ∈ M is called a limit point of the leaf L if there is a sequence
of points ym from L which converges to y in topology of manifold M and does not converge to
this point in the topology of the leaf L [36].

The set of all limit points of the leaf L we will denote by Ω(L). It is easy to show that
the limit set consists of the whole leaves,i.e.if y ∈ Ω(L) then L(y) ⊂ Ω(L),where L(y) is a leaf
containing y. Generally the set Ω(L) can be empty or can coincide with all manifold. It can
already take place for trajectories of dynamic systems. For example, if L is closed the set Ω(L)is
empty, and in case of an irrational winding of torus each trajectory everywhere is dense and
consequently its limit set coincides with all torus. Studying of limit sets of leaves of foliation
includes studying of limit sets of trajectories of the differential equations and it is the important
problem of the foliation theory. On these subjects there are numerous researches [1], [14], [25],
[33]- [39]. In work [1] following properties of a leaf are proved which also takes place for foliation
with singularities too.

Theorem 2.2. (1). A leaf L0 is proper leaf if and only if L0
⋂

Ω(L0) = 0 ;
(2). A leaf is L0 is not proper leaf if and only if Ω(L0) = L0 where L0 is the closure of L0 in

manifold M .

For two leaves L1 and L2 we will write in L1 ≤ L2 only in a case when L1 ⊂ Ω(L2). The
inequality L1 < L2 means L1 ≤ L2 and L1 6= L2 . The relation ≤ on the set of leaves has been
entered by the Japanese mathematician T. Nisimori in the paper [41].

We will denote by (M/F,≤) set of leaves with the entered relation on it. It is obvious that
the ≤ on M/F reflective and is transitive, but in many cases this relation is not asymmetric,
therefore generally the set (M/F,≤) is not partially ordered.T. Nisimori was interested in the
case where (M/F,≤) is a partially ordered set. Except that T. Nisimori has entered concepts
of depth of a leaf L and depth of foliation F as follows: d(L) = sup{k : there exist leaves
L1, L2, ..., Lk such that L1 < L2 < ... < Lk = L}, d(F ) = sup{d(L) : L ∈ M/F}.

A leaf L, being the closed subset, has the depth equal to one. It is easy to construct one
dimensional foliation of Euclid plane with leaves of depth equal to two.

In work of [41] Nishimori has proved the following theorem which shows that for each positive
integer k there exists two-dimensional foliation with leaves of the depth equal to k.

Theorem 2.3. Let S2 be a closed surface of a genus 2. For all positive integer k there is a
codimension one foliation F on M = S2× [0, 1] satisfying the following conditions (1),(2)and(3).

(1) All leaves of F are proper and transverse to x × [0, 1] for all x ∈ S2. S2 × 0 and S2 × 1
are compact leaves.

(2) d(F ) = k.
(3) All holonomy groups of F are abelian.

The following theorem is proved in paper [1] shows that there exists one dimensional analytical
foliation generated by integral curves of analytical vector field which have leaves of depth equal
to 1, 2 and 3.

Theorem 2.4. Let Sk be a k dimensional sphere. On the manifold S2 × S1 there exists an
analytical vector field without singular points and with three pairwise different integral curves
α, β, γ such that α ⊂ Ω(β),β ⊂ Ω(γ),where α is a closed trajectory, Ω(β) consists of only closed
trajectories,Ω(γ) consists of only the trajectories of depth equal to two.

This vector field generates one-dimensional foliation of the depth equal to 3.

Remark 2.1. The example of not analytical dynamic system of a class C∞ was constructed in
the paper [25] for which there is an infinite chain of not closed trajectories Li such that each
trajectory Li+1 is in the limit set of Li.

In the paper [41] for codimension one foliation the following theorem is proved:
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Theorem 2.5. (Nishimori). If d(F ) < ∞ or all leaves of foliation F are proper, then the set
(M/F,≤) is partially ordered.

Nishimori, studying property codimension one foliation in the case when the set (M/F,≤)
is a partially ordered, has delivered following questions which are of interest for foliation with
singularities too [41]:
1. Are all leaves of foliation F proper under the assumption that the set(M/F,≤) is partially
ordered?
2. Is a leaf L proper under the assumption that dL < ∞?

A.Narmanov studied the relation ≤ for foliation with singularities in the paper [33]. In
particular, he proved the following theorems which solves problems 1, 2 delivered by Nishimori.

Theorem 2.6. Let M/F be the set of leaves of foliation F with singularities. Then the set
(M/F,≤) is a partially ordered if and only if all leaves are proper.

Theorem 2.7. If the depth of a leaf is finite, then it is proper leaf.

It is known that the limit leaf of compact leaves codimension one foliation on compact manifold
is a compact leaf and the limit set of each leaf contains finite number of compact leaves.

The following theorems are generalizations of these facts for leaves with finite depth [34].

Theorem 2.8. Let F be a transversely oriented codimension one foliation on compact manifold
M , Li- a leaf of foliation F , and xi −→ x, where xi ∈ Li. If dLi ≤ k for each i then dL(x) ≤ k.

Theorem 2.9. Let F is a transversely oriented codimension one foliation on compact manifold
M , L0 - some leaf of foliation F . Then for each k ≥ 1 the set Ck = {L : L < L0, dL = k} either
is empty, or consists of finite number of leaves.

Let’s remind that transversally orientability of F means that there exists smooth non-degenera-
ted vector field X on M , which is transversal to leaves of foliation F .

Let x ∈ M , L(x) is a leaf foliation,containing the point x, Tx is a manifold dimension of
n − k transversal to L(x) such that Tx

⋂
L(x) = x. To each the closed continuous curve in

L(x) beginning and the ending at the point x ∈ M corresponds a local diffeomorphism g of the
manifold Tx, given in some neighborhood of the point x in Tx such that g(x) = x. The set of
such diffeomorfisms forms the pseudogroup Γx(L) of the leaf L at the point x, and germs of
these diffeomorphisms form holonomy group H of the leaf L(x). For different points from L
corresponding holonomy groups are isomorphic [53].

The important results in foliation theory are received by G. Reeb. One of his theorems is
called as the theorem of local stability which can be formulated as follows.

Theorem 2.10. [53] Let L0 be a compact leaf foliation F with finite holonomy group. Then
there is an open saturated set V which contains L0 and consists of compact leaves.

Let’s notice that a saturated set S ⊂ M on a foliated manifold is a subset which is the union
of leaves.

In 1976 in Rio de Janeiro at the international conference the attention to the question on
possibility of the proof of theorems on local stability for noncompact leaves [50] has been brought.
In 1977 the Japanese mathematician T. Inaba has constructed a counterexample which shows
that if codimension of foliation is not equal to one G. Reeb’s theorem cannot be generalized for
noncompact leaves [14].

Let’s bring the theorem on a neighborhood of a leaf with finite depth which is generalization
of the theorem of J. Reeb on local stability for transversely oriented codimension one foliation.

Let F transversely oriented , X a smooth vector field on M , transversely to leaves of F .
Let x ∈ M, t → Xt(x), - the integral curve of a vector field X passing through the point x at
t = 0.Let’s put Tx = {Xt(x) : −a < t < a}.In further will write Tx ≈ (−a, a) and as usually, to
replace subsets of Tx by their images from (−a, a). The point is y ∈ Tx called as a motionless
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point of pseudo-group Γ = Γx(L), if g(y) = y for each g ∈ Γ, advanced in a point y ∈ Tx. If
there exists ε > 0 such that each point from (−ε, ε) is a motionless point of pseudo-group Γ we
will say that the pseudo-group is Γ trivial.

Let F be a codimension one foliation, L be a some leaf of Fwith finite depth, ρ - distance
function defined by some fixed Riemannian metric on M .

Let’s enter set Ur = {y ∈ M : ρ(y, L) < r}, r > 0, where ρ(y, L)- distance from the point y to
the leaf L.

Theorem 2.11. ([35]). Let F be a transversely oriented codimension one foliation on compact
manifold M . If the holonomy pseudogroup Γ the leaf L is trivial,then for each r > 0 there is a
invariant open set V containing L and consisting of leaves diffeomorphic to L which satisfies to
following conditions:
1)V ⊂ Ur;
2) dLα = dL for each leaf Lα ⊂ V .

One more generalization of G. Reeb theorem for a noncompact leaf is resulted below.For this
purpose we will bring some definitions.

Let M be smooth connected complete Riemannian manifold of dimensionn with Riemannian
metric g, F -smooth foliation of dimensions k on M .

Let’s denote through L(p) a leaf of F passing through a point p, F (p)- tangent space of leaf
at the point p , H(p) - orthogonal complementary of F (p) in TpM , p ∈ M . There are two
subbundle (smooth distributions),TF = {F (p) : p ∈ M},H = {H(p) : p ∈ M}of tangent bundle
TM such ,that TM = TF ⊕H where is F orthogonal addition TF .
Piecewise smooth curve γ : [0, 1] → M we name horizontal, if γ̇(t) ∈ H(γ(t)) for each t ∈
[0, 1].Piecewise smooth curve which lies in a leaf foliation F is called as vertical.

Let I = [0, 1], ν : I → M a vertical curve, h : I → M a horizontal curve and h(0) = ν(0).
Piecewise smooth mapping P : I × I → M is called as vertical-horizontal homotopy for pair
v, h if t → P (t, s) is a vertical curve for each s ∈ I, s → P (t, s) is a horizontal curve for each
t ∈ I,and P (t, 0) = ν(t) for t ∈ I, P (0, s) = h(s) for s ∈ I. If for each pair of vertical and
horizontal curves ν, h : I → M with h(0) = ν(0) there exists corresponding vertical-horizontal
homotopy P ,we say that distribution H is Ehresman connection for F [3].

Let L0 a leaf of codimension one foliation F , Ur = {x ∈ M : ρ(x;L0) < r}, where ρ(x, L0)-
distance from the pointx to a leaf L0. We will assume that there is such number r0 > 0 that
for each horizontal curve h : [0, 1] → Ur0 and for each vertical curve ν : [0, 1] → L0 such that
h(0) = v(0) there exists vertically-horizontal homotopy for pair (ν, h). At this assumption we
formulate generalization of the theorem of J. Reeb [36].

Theorem 2.12. Let F be a transversely oriented codimension one foliation , L0 be a relatively
compact proper leaf leaf with finitely generated fundamental group. Then if holonomy group of
the leaf L0 is trivial then for each r > 0 there is an saturated set V such that L0 ⊂ V ⊂ Ur and
restriction of F on V is a fibrarion over R1 with the leaf L0.

From the geometrical point of view, the important classes of foliation are total geodesic and
Riemannian foliations. Foliation F on Riemannian manifold M is called total geodesic if each
leaf of foliation F is a total geodesic submanifold,i.e every geodesic tangent to a leaf foliation F
at one point, remains on this leaf. The geometry of total geodesic foliations is studied in works
[13], [16], [38], [4].

Foliation F on a Riemannian manifold M is called Riemannian if each geodesic, orthogonal
at some point to a leaf of foliation F , remains orthogonal at all points to leaves of F [47].
Riemannian foliation without singularities for the first time have been entered and studied by
Reinhart in work [47]. This class foliation naturally arising at studying of bundles and level
surfaces. Riemannian foliation are studied by many mathematicians, in particular,in works of
R. Herman [10], [11], [12], P. Molino [26], A. Morgan [27], Ph. Tondeur [57]. The most simple
examples of Riemannian foliation are partition of Rn into parallel planes or into concentric
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hyperspheres. Riemannian foliation with singularities have been entered and studied in works
of P. Molino [26], they also were studied by A. Narmanov in the papers [38], [40].

Let M smooth connected complete Riemannian reducible manifold. Then on M there are two
parallel foliations, mutually additional on orthogonality [20]. If M simple connected manifold
then the de Rham theorem takes place which asserts that M is isometric to direct product of any
two leaves from different foliations [20]. In this case both foliations are Riemannian and total
geodesic simultaneously. Below it is presented results of authors on geometry of Riemannian
and totally geodesic foliations.

Assume that F is a Riemannian foliation with respect to Riemannian metric g on M . Let
π1 : TM → TF , π2 : TM → H be orthogonal projections, V (M) ,V (F ), V (H) be the sets of
smooth sections of bundles TM ,TF and H accordingly. If X ∈ V (F ) (X ∈ V (H)) X is a called
a vertical (horizontal) field.

Now we will assume that each leaf of F is a total geodesic submanifolds of M . It is equivalent
to that, ∇XY ∈ V (F ) for all X,Y ∈ V (F ) [47], where ∇- Levi-Civita connection. In this case
F is a Riemannian foliation with total geodesic leaves. Then on bundles TF and H are given
metric connections ∇1 and ∇2 as follows.If X ∈ V (F ),Y ∈ V (H), Z ∈ V (M), we will put

∇1
Z = π1(∇Z(X)), ∇2

Z(Y ) = π2[Z1, Ỹ ] + π2[∇Z2 , Y ],

where Z = Z1 ⊕ Z2,Z1 ∈ V (F ), Z2 ∈ V (H), Ỹ ∈ V (M), π2Ỹ = Y . Here [Z1, Ỹ ] - Lie bracket of
vector fields Z1 and Ỹ . ∇2 is a metric connection only in case when F is Riemannian. Owing
to that F is a totally geodesic foliation, connection ∇1 also is metric [38], [47].

Let p ∈ M , S(p) be the set of points M ,which can be connected by horizontal curves with
p. Owing to that foliation F is total geodesic, for each the p ∈ M set S(p) has topology and
differentiable structure, in relation to which S(P ) is a immersed submanifold of M [4].It is easy
to prove the following assertion.

Lemma 2.1. dimS(p) ≥ k for every point p ∈ M .

Owing to that the manifold M is complete, and considered foliation is a Riemannian, the
distribution H is a Ehresmann connection for F [3]. Therefore for each piece-wise smooth
curve γ : I → M there exists unique vertical-horizontal homotopy Pγ : I × I → M such that
γ(t) = Pγ(t, t) for t ∈ I. Let P : I × I → M be a vertical-horizontal homotopy. We will denote
by Dt(P (t, s)) the tangent vector of the curve t → P (t, s) at the point P (t, s), by Ds(P (t, s))
the tangent vector of the curve s → P (t, s) at the point P (t, s).

Lemma 2.2. Let X(t, s) = Ds(P (t, s)), Y (t, s) = Dt(P (t, s)) for (t, s) ∈ I × I. Then ∇1
XY = 0

and ∇2
Y X = 0.

In the proof of the de Rham theorem projections of a curve γ in L(p0) and in S(p0) are defined
with connection ∇ and it is shown that these projections coincide with curves Pγ(·, 0) : I → M
and Pγ(0, ·) : I → M accordingly. In this case it is used that distribution H is complete
integrable [20]. In the paper [38] the similar fact is proved for projections of a curve γ without
the assumption that H is complete integrable by means of metric connection ∇̃ which is entered
below. Metric connection ∇̃ is defined as follows:

∇̃ZX = ∇1
ZX1 +∇2

ZX2,

where X,Z ∈ V (M), Xi = πi(X), i = 1, 2.It is not difficult to check up that distributions TF

and H are parallel with respect to ∇̃.
Let γ : I → M be a smooth curve,γ(0) = p0 and γ(1) = p, C : I → Tp0M is a development

of the curve γ in Tp0M defined by connection ∇̃. (See definition of development in [[20],p.129].
(Here for convenience tangent vector space Tp0M is identified with affine tangent space at the
point p0.)
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Let C(t) = (A(t), B(t)) where A(t) ∈ F (p0),B(t) ∈ H(p0) for t ∈ I. As M is a complete
Riemannian manifold, ∇̃- metric connection, there are smooth curves γ1, γ2 : I → M , which are
developed on curves t → A(t) and t → B(t) accordingly ([20], p.167, the theorem 4.1). According
to the proposition 4.1 in ([20],p.129) γi is a such curve that result of parallel transport γ̇i to
the point p0 along γ−1

i defined by connection ∇̃ coincides with the result of parallel transport
of πi(γ̇(t)) to the point p0 along γ−1 defined by connection ∇̃ too.That is why γ1 is a vertical
curve, γ2 is a horizontal curve. Curves γ1, γ2 are called projections of the curve γ in L(p0) and
in S(p0)accordingly.

The following theorems are proved in the work [38].

Theorem 2.13. The projection of curve γ : I → V in L(q0) (in S(q0)) is a curve P (·, 0) : I →
L(q0) (accordingly P (0, ·) : I → S(q0)).

The following theorem shows that if distribution H is complete integrable if and only if
connection ∇̃ coincides with Levi-Civita connection ∇ .

Theorem 2.14. Following assertions are equivalent.
1.Distribution H is complete integrable (i.e dimS(p) = n− k for each p ∈ M).
2. ∇̃ is connection without torsion (i.e ∇̃ = ∇ ).

Remark 2.2. As shows known Hopf fibration of on three-dimensional sphere, the distribution
H it is not always complete integrable.

In a case when H is complete integrable de Rham theorem takes place: if M is simple
connected,it is isometric to product L(p) × S(p) for each p ∈ M . In this case S(p) is a leaf
of foliation F⊥ generated by distribution H. Projections of any point p ∈ M in L(p0) and in
S(p0) are defined as follows. Let γ : I → M is a smooth curve, γ(0) = p0, γ(1) = p, ν, h
are projections of γ in L(p0) and in S(p0). The points ν(1), h(1) are called as projections of p
in L(p0) and in S(p0) accordingly. Owing to that the distribution H is completely integrable,
the projection of p depends only on the homotopy class of the curve γ.That is why when M is
simple connected,the mapping f : p → (p1, p(2) is correctly defined. Under theorems 1.12 and
1.13 mapping f is a isometric immersing. Since dimM = dim{L(p0)× S(p0)} the mapping f is
covering mapping, hence, it is an isometry ([20], p.134).

In the known monograph [57] Ph. Tondeur studied foliation, generated by level surfaces of
functions of a certain class. He considered function f : M → R1 without critical points on
Riemannian manifold M for which length of a gradient is constant on each level surface. For
such functions he has proven that foliation generated by level surfaces of such function, is a
Riemannian foliation . Authors of the present article studied geometry of foliation generated by
level surfaces of the functions considered in the monograph of professor Ph. Tondeur without
the assumption of absence of critical points.

Definition 2.2. Let M be a smooth manifold of dimension n. Function f : M → R1 of the
class C2(M, R1) for which length of a gradient is constant on connection components of level
sets is called a metric function.

Let f : Rn → R1 be a metric function. We will consider system of the differential equations

ẋ = gradf(x). (1)

As, the right part of system 1 is differentiable, for each point x0 ∈ M there is a unique solution
of system 1 with the initial condition x(0) = x0. The trajectory of system 1 is called gradient
line of the function f .

Theorem 2.15. [17]. Curvature of each gradient line of metric function is equal to zero.

In the papers [17], [19] topology of level surfaces are studied under the assumption that each
of a connection components of the set of critical points of metric function is either a point, or is
a regular surface and every component is isolated from others.
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The following theorem gives complete classification of foliations generated by level surfaces of
metric function [19].

Theorem 2.16. Let f : M → R1 be a metric function given in Rn. Then level surfaces of
function f form foliation which has one of following n types :
1) Foliation F consists of parallel hyperplanes;
2) Foliation F consists of concentric hyperspheres and the point (the center of hyperspheres);
3) Foliation F consists of concentric cylinders of the kind Sn−k−1×Rk and the singular leaf Rk

(which arises at degeneration of spheres to a point), where k- the minimum of dimensions of
critical level surfaces,1 ≤ k ≤ n− 2.

At the proof of the 2.1 4 the following theorem is used which also is proved in work [19].

Theorem 2.17. Let L be a regular surface of dimension r which is the closed subset Rn, where
1 ≤ r ≤ n− 1. If the normal planes passing through various points L are not crossed,then L is
r- a dimensional plane.

This theorem represents independent interest for the course of differential geometry.
The following theorem shows internal link between geometry of Riemannian manifold and

property of metric function which is given on it.

Theorem 2.18. [32] Let (M, g) be a smooth Riemannian manifold of dimension n, f : M → R1

metric function. Then each gradient line of the function f is a geodesic line of the Riemannian
manifold M .

For the metric functions given on a Riemannian manifold , it is difficult to get classification
theorems, as in a case M = Rn. Here one much depends on topology of Riemannian manifold
on which function is given. For example, in Euclid case if metric function has no critical points,
then as shown [19] all level surfaces are hyperplanes. It is easy to construct metric function
without critical points on the two-dimensional cylinder ( with the metric induced from Euclid
structure of R3) level lines of which are circles (compact sets).

The following theorem, is the classification theorem for level lines of the metric function given
on two-dimensional Riemannian manifold.

Theorem 2.19. [32] Let M be two-dimensional Riemannian manifold, f : M → R1 be a metric
function without critical points. Then all level lines are homeoomorphic to circle, or all level
lines are homeoomorphic to a straight line.

The following theorem shows that if the metric function is given on complete simple connected
Riemannian manifold and does not have critical points, then it has no compact level surfaces.

Theorem 2.20. [32] Let M be a smooth complete simple connected Riemannian manifold,
f : M → R1 be a metric function without critical points. Then level surfaces are mutually
diffeomorphic noncompact submanifolds of M .

3. Applications of foliation theory in control systems

The last years methods and results of foliation theory began to be used widely in the qual-
itative theory of optimal control. It was promoted by works of the American mathematician
of G. Sussmann [52] and the English mathematician P. S tefan [51] which have shown that a
orbit of family of smooth vector fields is a smooth immersed submanifold. Besides, they have
shown that if dimensions of orbits are the same, partition of phase space into orbits is a foliation.
Papers [33], [35], [36], [37], [7], [39], [40], [43], [44] are devoted to applications of foliation theory
in control theory.

Let D be a family of the smooth vector fields on M , and X ∈ D. Then for a point x ∈ M by
Xt(x) we will denote the integral curve of a vector field X passing through the point x at t = 0.
Mapping t → Xt(x) is defined in some domain I(x) which generally depends not only on a field



120 TWMS J. PURE APPL. MATH., V.2, N.1, 2011

X, but also from the point x. Further everywhere in formulas kind of Xt(x) we will consider
that t ∈ I(x). The orbit L(x)passing through a point x of the family of the vector fields D is
defined as a set of points y from M for which there are real numbers t1, t2, . . . , tk and vector fields
Xi1 , Xi2 , . . . Xik from (where k is a natural number) such that y = Xtk

ik
(Xtk−1

ik−1
(. . . (Xt1

i1
) . . .)).

Now we will bring a definition of foliation with singularities [51]. A subset L of manifold M
is called as a leaf if

1) there is a differential structure σ on L such that (L, σ) is a connected k- dimensional
immersed submanifold of M .
2) for locally connected topological space N and for continuous mapping f : N → M such that
f(N) ⊂ L the mapping f : N → (L, σ) is continuous.

Partition F of manifold M into leaves is called smooth (of the class Cr ) foliation with
singularities if following conditions are satisfied:

1) For each point x ∈ M there exists a local Cr- chart (ψ,U) containing the point x such
that ψ(U) = V1 × V2 where V1 is a neighborhood of origin in Rk, V2- a neighborhood of origin
in Rn−k,k- dimension of the leaf containing the point x;

2) ψ(x) = (0, 0) ;
3)For each leaf L such that L ∩ U 6= ∅ it takes place equality L ∩ U = ψ−1(V1 × l) where

l = {ν ∈ V2 : ψ−1(0, ν) ∈ L}.
By definition 2.1 each regular foliation is a foliation in sense of the above-stated definition.

In this case every connection component of the set l is a point. If dimensions of leaves of a
foliation with singularities are the same as noted above, it is a foliation in sense of the definition
2.1. Thus, the conception of foliation with singularities is a generalization of classical notion of
a foliation (now which is called as regular foliation). In the literature instead of ”foliation with
singularities” the term ”singular foliation” is used also [26]. To the studying of a foliation with
singularities are devoted papers [1], [26], [36], [37], [51].

Now we will consider some applications of the foliation theory in problems of the qualitative
theory of control systems.

Let’s consider a control system

ẋ = f(x, u), x ∈ M,u ∈ U ⊂ Rm, (2)

where M is a smooth (class C∞) connected manifold of dimension n with some Riemannian
metric g, U is a compact set, for each the u ∈ U vector field f(x, u) is a field of class C∞,
and mapping f : M × U −→ TM ,where TM is the tangent bundle of M , is continuously
differentiable. It means that there is such open set V such that U ⊂ V ⊂ Rm, and continuously
differentiable mapping f̄ : M × V −→ TM , restriction of which on M × U coincides with
f(x, u). Admissible controls are defined as piecewise-constant functions u : [0, T ] −→ U , where
0 < T < ∞. Thus, the trajectories of system 2 corresponding to admissible controls, represent
piecewise smooth mapping x : [0, T ] → M .

The purpose of control is a bring of the system to some fixed (target) point η ∈ M . We will
say that the point x0 ∈ M is controllable from a point η in time T > 0, if there is such trajectory
of x : [0, T ] → M of the system 2 that x(0) = x0, x(T ) = η. Let’s denote by Gη(< T ) a set
of points of M which are controllable from a point η for time, smaller than T .We assume that
η ∈ Gη(< T ) for each T > 0. The set of all points M ,which are controllable from a point η, is
called as set of controllability with a target point η and is denoted by Gη. We will denote by
T = Tη(x) function of Bellman given on set Gη for the optimal time problem. It is known that
a set of smooth vector fields on a smooth manifold can be transformed into Lie algebra in which
as product of vector fields X and Y serves their Lie bracket [X,Y ].

Let’s denote by D set of vector fields {f(·, u) : u} ∈ U , by A(D) minimal Lie subalgebra,
containing D, by Ax(D) the subspace tangent spaces at a point x ∈ M , consisting of all vectors
{X(x) : X ∈ a(D)}. If we will denote by L(η) a orbit of family D containing the point η, then
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it follows from definition of the orbit that Gη ⊂ L(η) for all η ∈ M . The following assertion [43]
takes place.

Theorem 3.1. If dimAη(D) = dimL(η) then intGη 6= ∅ in topology of L(η).

Now let us give following definitions.

Definition 3.1. We will say that the system 2 is completely controllable on L(η0), if for all
η ∈ L(η0) it takes place equality Gη = L(η0) .

Definition 3.2. The system 2 is called normally -locally controllable (or, more shortly, N -
locally controllable) near a point η if for any T > 0 there is a neighborhood V of the point η in
L(η) such that each point from V is controllable from η in time, smaller T .

If the system is N - locally controllable near each point of L(η) we will say that it is N - locally
controllable on L(η) (see [52]).

Definition 3.3. We will say that the system 2 is completely (N -locally) controllable on invariant
set S if it is completely controllable ( N - locally controllable) on each a leaf of S.

Assume that dimAx(D) = k for every x ∈ M , where 0 < k < n, Ax(D) = {X(x) : X ∈ A(D)}.
In this case splitting of F manifold M into orbits family D is a k-dimensional foliation, i.e.orbits
are k dimensional submanifolds of M .

Let’s consider the following question: if the system 2 has property of complete controllability
on one fixed leaf of the foliation F , under what conditions the system 2 has this property on
leaves close to a given leaf?

This question closely related with problems of the qualitative theory of foliations on local
stability of a leaf in sense of J.Reeb(see [53]). In the paper [7] the answer is given to this
question in the case when the leaf L0 of F in neighborhood of which the system 2 is studied,is
compact set. In this case conditions of the theorem of J.Reeb on local stability is required.
Namely, the following theorem is proved.

Theorem 3.2. Let L0 be a compact leaf of F with finite holonomy group.If the system 2 is
complete controllable on L0 then it is complete controllable on leaves,close to L0.

Thus, existence of such saturated (invariant) neighborhood V of a leaf L0 gives the sufficient
condition for stability of the complete controllable system 2 on L0 , when L0 is a compact
leaf. As Example 3 in [7] shows, complete controllability on close leaves does not follow from
the fact that the system 2 is complete controlled on a noncompact proper leaf L0 having a
neighborhood V described in theorem 3.1. Therefore, in a case when L0 is a noncompact leaf,
we need additional conditions that guarantee stability of the complete controlled system 2 on L0.
The theorem 2.12 gives the possibility to get sufficient conditions for stability of the complete
controllable system 2 on L0 , when L0 is a noncompact leaf.

Theorem 3.3. [32] Let F be a transversely oriented codimension one foliation, L0 be a relatively
compact proper leaf with finitely generated fundamental group and with trivial holonomy group.
Then if the system 2 is N -locally controllable on L0 (the closure in M) then there is an open
saturated neighborhood V of the leaf L0 such that on each leaf from V the system 2 is complete
controllable.

Remark 3.1. The closure of each leaf is an invariant set (see ([53], Theorem 4.9).

Remark 3.2. If the system 2 is N -locally controlled on a leaf L then it is complete controlled
on L (see [39]).

Let now dimAx(D) = k for every x ∈ M where 0 < k < n, F is a Riemannian foliation
with respect to Riemannian metric g. We will remind that foliation F is called Riemannian, if
each geodesic orthogonal at some point to a leaf foliation F , remains orthogonal to leaves at
all points.
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Theorem 3.4. [39] Let (M, g) be a complete Riemannian manifold, L0 be a relatively compact
proper leaf of F .Then if the system 2 N -is locally controllable on L0 (on the closure of L0 in
M)then there is an invariant neighborhood V of the leaf L0 such that system (1) is complete
controllable on each leaf from V .

In the paper [26] it is given the necessary and sufficient condition for singular foliation F to
be Riemannian foliation. This condition deals with vector fields from A(D) and Riemannian
metric g.

Let now F be k-dimensional Riemannian foliation with respect to Riemannian metric g,
where 0 < k < n. It is possible to present each vector field X ∈ V (M) as X = XP + XH where
XP , XH orthogonal projections of X on P andH accordingly. IfXH = 0, then X ∈ V (F ) and
the vector field Xis called tangent vector field , if XP = 0 then X ∈ V (H) and the vector field
X is called horizontal field. For vector fields X, Y we will consider the bilinear symmetric form
gT (X,Y ) = g(XH , YH) on V (M), kernel of which coincides with V (F ). We will study properties
of this form. By the definition of foliation for each point p ∈ M there is a neighborhood
U of the point p and local system of coordinates x1, x2, . . . xk, y1, y2, . . . yn−k on U such that

∂
∂x1 , ∂

∂x2 , . . . , ∂
∂xk form basis of sections of TF |U .The basis νk+1, νk+2, . . . , νn for sections H|U

can be chosen in such a manner that brackets [X, νj ] will be tangent vector fields to foliation F
for each section X of the bundle H|U .Now assume that foliation F is a Riemannian. Then for
each tangent vector X ∈ V (F )|U it takes place Xg(νi, νj) = 0, i, j = k + 1, . . . , n [40]. By using
this fact, it is easy to show that for each vector field X ∈ V (F ) takes place

XgT (Y, Z) = gT ([X, Y ], Z) + gT ([Y, [X, Z]]),

where Y,Z ∈ V (M). In this case is gT called transversal metrics for foliation F , defined by the
Riemannian metric g ([26], see p.77). Notice that a transversal metrics gT determines the local
distance between the leaves,since it defines the length of the perpendicular geodesics.As follows
from ( [26] the assertion 3.2), it is true also the converse fact i.e. if it is given k-dimensional
foliation F on Riemannian manifold and Riemannian metric g defines transversal metric for F
then F is a Riemannian foliation with respect to Riemannian metric g. Authors proved the
similar fact for foliations with singularities.

Let F be a foliation with singularities, L is a leaf of the foliation F , Q is a normal bundle
of L. Then Riemannian metric g defines the metric gL

T on Q as follows: if ν1, ν2 : L → Q are
smooth (of the class C∞ ) sections of normal bundle Q we will put gL

T (ν1, ν2) = g(X, Y ), where
X, Y ∈ V (M),the restrictions of X, Y on L coincides with ν1, ν2 accordingly. The metric gL

T is
called transversal metric for F on L, if for each X ∈ V (F ) at points of the leaf L takes place

XgL
T (Y, Z) = gL

T ([X,Y ], Z) + gL
T ([Y, [X, Z]]),

where Y,Z ∈ V (M), gL
T (Y, Z) = g(πY, πZ) , π : TM → Q is the orthogonal projection consid-

ered over L. We will notice that Riemannian foliation with singularities has no n-dimensional
leaves.There is an assumption in ([26], p. 201) that if complete Riemannian metric defines on
each leaf foliation F transversal metric,then foliation F will be a Riemannian. This problem is
solved positively by following theorem.

Theorem 3.5. [40] Let M be a complete Riemannian manifold with Riemannian metric g,
F is a singular foliation on M which has no n- dimensional leaves. Then the foliation F is a
Riemannian if and only if Riemannian metric g defines on each leaf of the foliation F transversal
metric.

Now we will assume that x0 ∈ M , L0 = L(x0) is a proper leaf with trivial holonomy group
and the system 2 is completely controllable on L0.

Theorem 3.6. [1] Let the mapping x → L(x) be continuous at a point x0. Then the system 2
is completely controllable on the orbits,sufficiently close to L0.
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Remark 3.3. Multiple-valued mapping x → L(x) is called to be lower semicontinuous at a point
x0 if for each open set V such that V

⋂
L(x0) 6= ∅ there exists neighborhood Bx0 of the point x0

such that L(x)
⋂

V 6= ∅ for x ∈ Bx0.

Multiple-valued mapping x → L(x) is called to be upper semicontinuous at a point x0 if
for each open set V such that L(x0) ⊂ V , there is a neighborhood Bx0 of the point x0 such
that L(x) ⊂ V for all x ∈ Bx0 . Multiple-valued mapping is continuous at a point x0 if it
simultaneously lower and upper semicontinuous at a point x0.In our case is easy to prove that
mapping x → L(x) is lower semicontinuous at each point of M [36].

Sufficient conditions at which mapping x → L(x) is continuous, are studied in papers of
A.Narmanov [36], [37]. We will bring some of them. The following sufficient condition on
continuity of multiple-valued mapping x → L(x) follows directly from the theorem 2.10 of the
part one.

Theorem 3.7. Assume that dimAx(D) = k for every x ∈ M , where 0 < k < n. If the set L(x0)
is a compact leaf with finite holonomy group then mapping x → L(x) is continuous at the point
x0.

The following theorem shows that if foliation F is a singular Riemannian foliation then the
mapping x → L(x) is continuous at each point x0.

Theorem 3.8. ([36]) Let F is a Riemannian foliation with singularities. Then multiple-valued
mapping x → L(x) is continuous at each point of the manifold M .

Now we will consider the problem on a continuity Bellman function for a optimal time problem.
We will remind that Bellman function Tη(x) : Gη → R1 is defined as follows: Tη(η) = 0 , Tη(x) =
inf(τ : there exists trajectory α : [0, τ ] → M of the system2 such that α(0) = x, α(τ) = η).
The structure of set of controllability generally can be rather difficult. Now we will determine
a class of control systems for which a set of controllability Gη of the system 2 for all η ∈ M
coincides with a orbit L(η) of family of the vector fields D = {f(·, u) : u ∈ U}.
Definition 3.4. [43] We will say that the system 2 is continuously-balanced at a point x ∈ M if
for each vector field X ∈ D there are vector fields X1, X2, . . . , Xk from D, a neighborhood V (x)
of the point x and the positive continuous functions λ1(y), λ2(y), . . . , λk(y) which are given in
this neighborhood such that for all y ∈ V (x) takes place equality: X(y) +

∑
λi(y)Xi(y) = 0.

If we assume that the system 2 is continuously-balanced at each point x ∈ M by means of
results of work [51] it is possible to show that for each η ∈ M the set of controllability Gη of
system 2 coincides with the orbit L(η) of the family D = {f(·, u) : u ∈ U} .

Definition 3.5. We will say that function T = Tη(x) is continuous at the point x0 ∈ Gη if for
every ε > 0 there is such neighborhood V of the point x0 in topology of M that for any point
x ∈ Gη

⋂
V takes place inequality | Tη(x)− Tη(x0) |< ε.

For the system 2 given on compact manifold the following result is obtained by professor
N.N.Petrov [44].

Theorem 3.9. Let M be compact manifold. Then following assertions are equivalent:
1) System 2 is N - locally controllable near the point η.
2) For each T > 0 the set Gη(< T ) is a domain in the manifold L(η).
3) For each T > 0 the level x ∈ M : Tη(x) = T is the border of the setGη(< T ).
4) Bellman function T = Tη(x) is continuous at every point of Gη.

Thus, for compact manifold the problem on a continuity of Bellman function is reduced to a
question about N - local controllability of system 2. For noncompact manifolds the following
theorem gives the necessary and sufficient conditions of a continuity of Bellman function which
is presented in [44].
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Theorem 3.10. Let the system 2 be continuous-balanced at each point of M , for each T > 0
the set Gη(≤ T ) has compact closure and dimAx(D) = const for every x ∈ Gη.Then Bellman
function is continuous on Gη if and only if Gη is a proper leaf of the foliation generated by orbits
of D.

In a case when manifold M is a analytic and the set D consists of analytical vector fields
owing to theorem Nagano [28] the condition dimAx(D) = const for all x ∈ Gη is always satisfied.
Generally dimAx(D) can vary from a point to a point on Gη and always dimAx(D) ≤ dimLη

for x ∈ Gη. For continuously-balanced control systems the following theorem takes place [37].

Theorem 3.11. The set Gη is a proper leaf of the foliation generated by orbits of the family D
if and only if the set Gη is a set of type Fσ and Gδ simultaneously in topology of manifold M .
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