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BOTT’S RESIDUE FORMULA FOR SINGULAR VARIETIES∗

A. BURYAK1

Abstract. In this paper we develop a differential-geometric approach to the characteristic
numbers of singular varieties. In particular we generalize Bott’s residue formula for singular
varieties.
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1. Introduction

Characteristic numbers of compact smooth manifolds are important topological invariants.
In [5] W. Ebeling and S. M. Gusein-Zade offered a definition of characteristic numbers of sin-
gular compact complex analytic varieties. In [4] the author proved that there exists a singular
projective variety with an arbitrary given set of characteristic numbers. It is well known that
this fact is not true for smooth varieties (see e.g. [7]).

There is the well known construction of characteristic classes using the curvature tensor.
Hence we can compute characteristic numbers by integration of certain differential forms. In
this paper we generalize this approach to singular varieties. We prove that characteristic numbers
of a singular variety are equal to integrals of certain differential forms over the smooth part of
the variety.

In [3] R. Bott gave a method for a computation of characteristic numbers using holomorphic
vector fields. We give a generalization of this result for singular varieties. As a byproduct of his
construction R. Bott defined new invariants of a holomorphic vector field near its singular point
and proved that the sum of these invariants over all singular points of a holomorphic vector field
on a smooth compact analytic manifold is equal to zero. In this paper we also give a partial
generalization of this result.

2. Main results

2.1. Characteristic numbers of singular varieties. For a singular analytic variety X of
dimension n, let νX : X̂ → X be its Nash transform and let T̂X be the tautological bundle over
X̂ (see, e.g, [6]). If X is embedded into a smooth complex analytic manifold M , then over the
nonsingular part Xreg of X there is a section of Grn(TM) given by the tangent space to X.
The Nash transform X̂ is the closure in Grn(TM) of the image of this section and the map νX

is the restriction of the projection Grn(TM) → M to X̂. The bundle T̂X is the restriction to
X̂ of the tautological bundle over Grn(TM). Let the variety X be compact. For a partition
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I = i1, . . . , ir, i1 + . . . + ir = n of n the corresponding characteristic number cI [X] of the variety
X is defined by

cI [X] := 〈
r∏

j=1

cij (T̂X), [X̂]〉, (1)

where [X̂] is the fundamental class of the variety X̂.

2.2. Differential-geometric construction. Let X ⊂ M be an n-dimensional compact com-
plex analytic subvariety of a smooth complex manifold M . Let us choose a hermitian structure
on M and restrict it to Xreg. Let ∇ be the canonical connection in TXreg and K its curvature.
Consider differential forms c̃r ∈ Ω2r(Xreg) defined as follows

∑

i

λic̃i = det

(
1 +

i

2π
λK

)
. (2)

Let I = i1, . . . , ik be a partition of n. The first result of this paper is the following theorem.

Theorem 2.1. cI [X] =
∫
Xreg

∏k
j=1 c̃ij .

Proof. Let X̂ ⊂ Grn(TM) be the Nash transform of X. The hermitian structure on M defines
the hermitian structure in the tautological bundle τn over Grn(TM). Let ∇ be the canonical
connection in τn and K its curvature. Consider differential forms c̃r ∈ Ω2r(Grn(TM)) defined
as follows ∑

i

λic̃i = det

(
1 +

i

2π
λK

)
. (3)

It is clear that c̃r|ν−1
X (Xreg) = c̃r. The form c̃r represents the class cr(τn) ∈ H2r(Grn(TM)). The

variety X is analytic, so

〈ci1(τn) . . . cik(τn), [X̂]〉 =
∫
bX

c̃i1 . . . c̃ik . (4)

This concludes the proof of the theorem. ¤

2.3. Bott’s residue formula for singular varieties. Let X ⊂ M be an n-dimensional com-
plex analytic subvariety of a smooth complex manifold M . Let Z ⊂ X be a compact analytic
subset such that Xsing ⊂ Z. Let V be a holomorphic vector field on X\Z such that for any
p ∈ X\Z we have V (p) 6= 0. Let φ(c1, . . . , cn) be a homogeneous polynomial of degree n, where
the degree of ci is equal to i. We construct a residue Resφ(Z) of the field V near the set Z. In
fact we show that Bott’s construction from [3] works in our situation. Suppose X is compact.
Let φ[X] = 〈φ(c(T̂X)), [X̂]〉. We prove the following theorem.

Theorem 2.2. φ[X] = Resφ(Z).

We show a few examples of a computation of these residues.

2.4. The residue Res1 for singular varieties. Let X ⊂ M be an n-dimensional complex
analytic subvariety of a smooth complex manifold M . Let V be a holomorphic vector field on
Xreg. We say that V is holomorphic on X if for any point p ∈ Xsing there exists an open set
U ⊂ M, p ∈ U and a holomorphic vector field W on U such that W is tangent to Xreg ∩ U and
W |Xreg∩U = V . We say that the field V is not equal to zero at a point p ∈ Xsing if W (p) 6= 0.

Let Z ⊂ X be a compact complex analytic subset and V be a holomorphic vector field on
X\Z such that for any point p ∈ X\Z we have V (p) 6= 0. We construct a residue Res1(Z) of
the field V near the set Z. Suppose X is compact. We prove the following theorem.

Theorem 2.3. Res1(Z) = 0.
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We obtain a simple formula for this residue in the following situation. Consider the vector
field V =

∑N
i=1 λiz

i ∂
∂zi in CN , where λi 6= 0. Let (X, 0) ⊂ (CN , 0) be a germ of an n-dimensional

variety such that the field V is tangent to it. Consider a subset A ⊂ {1, . . . , N}, |A| = n. Let
ΠA ⊂ CN be the coordinate vector subspace. Suppose the projection pA : (X, 0) → (ΠA, 0) is a
branched covering of degree dA. We obtain the following theorem.

Theorem 2.4. Res1(0) = dAQ
i∈A λi

.

3. Constructions and proofs

3.1. The residue Resφ. We follow the notations of Section 2.3. We have the decomposition
TCM = T ′CM ⊕ T

′′
CM , where TCM is the complexified tangent bundle of M , T ′CM is in duality

with the forms of type (1, 0) and T ′′CM is in duality with the forms of type (0, 1). Let U = X\Z.
Consider an arbitrary hermitian metric in the bundle T ′CM and its restriction to T ′CU . Let ∇
be the canonical connection in the bundle T ′CU . Consider a section L ∈ Γ(End(T ′CU)) defined
as follows

Ls = [V, s]−∇V s,

where s ∈ Γ(T ′CU). Let π be an arbitrary differential (1, 0)-form on U such that π(V ) = 1. Let
K be the curvature of ∇. For an arbitrary n × n matrix A let φ(A) = φ(σ1(A), . . . , σn(A)),
where σi(A) is the i-th symmetric function of the eigenvalues of the matrix A. Let η(k) be the
coefficient of tk in the series η = φ(L+tK)π

1−t∂̄π
. Let Zε ⊂ X be an ε-neighbourhood of Z. Define the

residue Resφ(Z) by the following formula

Resφ(Z) =
(

i

2π

)n

lim
ε→0

∫

∂Zε

η(n−1). (5)

Let us prove the existence of the limit on the right hand side of (5). From [2] we know that

φ(K) + dη(n−1) = 0. (6)

From the proof of Theorem 2.1 it follows that the integral
∫
Zδ

φ(K) is well defined. Using (6)
and Stokes’ theorem, we get

∫
Zδ

φ(K) +
∫
∂Zδ

η(n−1) = limε→0

∫
∂Zε

η(n−1). This equation proves
the existence of the limit. It is easy to show that the residue Resφ(Z) doesn’t depend on the
metric on M , on the form π and on the embedding of X into M . Let the variety X be compact.
Theorem 2.2 immediately follows from Theorem 2.1 and the equation (6).
Example. For a smooth subvariety X ⊂ CPN of dimension n let CX ⊂ CN+1 be the cone over
X. Consider the vector field V =

∑N+1
i=1 zi ∂

∂zi in CN+1. The field V is tangent to CX. Let O be
the vertex of the cone CX. We can compute all residues Resφ(O) by the following procedure.
Let CX be the closure of CX in CPN+1. From [4] we know how to compute all characteristic
numbers of CX. On the other hand the field V can be extended to the holomorphic field on
CX\O with a zero of order 1 along the divisor D = CX\CX. In [1] there are formulas for all
residues Resφ(D). Hence using Theorem 2.2 we can compute all residues Resφ(O). Let us show
a few examples. Let d be the degree of X. Let H ⊂ CPN be a general hyperplane.

dimX = 1, Resc2(O) = c1[X]− d,

Resc21
(O) = 4c1[X]− 4d,

dimX = 2, Resc3(O) = c2[X]− c1[X ∩H],

Resc1c2(O) = 3c2[X] + 2c2
1[X]− 9c1[X ∩H],

Resc31
(O) = 9c2

1[X]− 27c1[X ∩H].
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If X is a hypersurface then we have the following

dimX = 1, Resc2(O) = 2d− d2,

Resc21
(O) = 8d− 4d2,

dimX = 2, Resc3(O) = d3 − 3d2 + 3d,

Resc1c2(O) = 5d3 − 19d2 + 23d,

Resc31
(O) = 9d3 − 45d2 + 63d.

3.2. The residue Res1. Again we follow the notations of Section 2.4. Let h(·, ·) be an arbitrary
hermitian form in the bundle T ′CM such that for any point p ∈ X\Z we have h(Vp, Vp) 6= 0.
Consider the differential (1, 0)-form πh,V on (X\Z)reg defined as follows πh,V (A) = h(A,V )

h(V,V ) ,
where A ∈ Γ(T ′C(X\Z)reg). For any point p ∈ X\Z there exist a neighbourhood U ⊂ M, p ∈ U
and a (1, 0)-form πU on U such that πh,V |U∩(X\Z)reg

= πU |U∩(X\Z)reg
, so we can integrate the

form πh,V (∂̄πh,V )n−1 over an arbitrary cycle in X\Z. The inner product of a form θ by a vector
field W is denoted by iW θ. It is easy to see that iV ∂̄πh,V = 0, hence iV (∂̄πh,V )n = 0 and
(∂̄πh,V )n = 0. We see that an integral of the form πh,V (∂̄πh,V )n−1 over a cycle doesn’t depend
on its homology class. Let Zε ⊂ X be an ε-neighbourhood of Z. Now we shall give the following
definition.

Res1(Z) =
(

i

2π

)n ∫

∂Zε

πh,V (∂̄πh,V )n−1.

Theorem 2.3 immediately follows from this definition. This residue doesn’t depend on a choice
of the form h and on an embedding of X into M .

Proof. Theorem 2.4. Consider the form h =
∑
i∈A

dzidz̄i in space CN and the form πh,V . By

definition

Res1(0) =
(

i

2π

)n ∫

S2N−1
ε ∩X

πh,V (∂̄πh,V )n−1.

Consider the vector field VA =
∑

i∈A λiz
i ∂
∂zi and the form hA =

∑
i∈A dzidz̄i on the space ΠA.

It is clear that p∗AπhA,VA
= πh,V , hence

(
i

2π

)n ∫

S2N−1
ε ∩X

πh,V (∂̄πh,V )n−1 =
(

i

2π

)n ∫

pA∗(S2N−1
ε ∩X)

πhA,VA
(∂̄πhA,VA

)n−1 =

= dA




(
i

2π

)n ∫

S2n−1
ε

πhA,VA
(∂̄πhA,VA

)n−1


 .

The expression in the brackets was computed in [3] and is equal to 1Q
i∈A

λi
. This completes the

proof of the theorem. ¤
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