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SIMPLE SINGULARITIES AND SIMPLE LIE ALGEBRAS*
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ABSTRACT. In this survey article, we summarize the Grothendieck’s conjectures relating simple
singularities of surfaces and the geometry of finite dimensional complex simple Lie algebras. We
also present the research works on the subject up to date with a list of references that can guide
a beginner in the subject.
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1. INTRODUCTION

We have tried to be self-contained in these notes, but we have discovered that it is a rather
difficult exercise. In fact, roughly, for someone having a basic mathematical culture, these notes
are readable. They show that to understand Grothendieck’s conjectures relating the geometry
of singularities and the geometry of simple Lie algebras, one needs a large understanding of
mathematics. Basic knowledge in Commutative algebra can be read in [3] or [20].

In these notes many assertions are quoted as theorems, although they are written nowhere.
For instance, the proof of Grothendieck’s conjectures is only done in the frame of Lie groups.
In [22], P. Slodowy extends some results to simple Lie algebras with a sketch of proof. In these
notes we assert that Grothendieck’s conjectures extend to simple Lie algebras. We conjecture
that this extension is true and we hope that some mathematician will fill up this gap. Below,
we also mention Theorem 2.1 without proof. It is an easy consequence of the px-theorem of
Teissier in [26].

It is well-known (see [21]) that complex simple Lie algebras are of type A,, B, Cy, Dy,
FEg, E7, Eg, Fy, Go, i.e. are isomorphic to some matrix algebras. In order to simplify the
presentation, we do not give the list of these simple Lie algebras here. We have tried to show
that special properties of simple algebras lead to the situation described here and not their
specific descriptions.

One has to notice that simple singularities were known as rational surface singularities of
embedding dimension 3 by A. Grothendiek (see [5]). V. Arnold understood afterwards the
relation with the moduli dimension 0 of these singularities.
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The reader should take these notes as a provocation more than a definitive statement of what
can be done in this domain.

The first author contributed from the beginning to the statements of Grothendieck’s conjec-
tures. However, later, A. Grothendieck never considered these conjectures to be so deep. We
encourage readers to have their own opinion.

2. SIMPLE SURFACE SINGULARITIES

Let U be an open neighbourhood of the point 0 in C3. Let f : &/ — C be the reduced
equation of a surface S, i.e. dim § = 2, such that 0 € S. It is a consequence of a known result
of S. Abhyankar ([1] (45.16) 2) or e.g. [20] Theorem 11, Chap. IV §D) that the dimension 2
hypersurface local ring

Os,0 = Ocs o/(f)
of S at 0 is normal if and only if the singularity of S at 0 is isolated (Here, for convenience, we
consider that the point 0 is an isolated singularity if there is a neighbourhood U’ of 0 in S such
that SNU"\ {0} is non-singular, so an isolated singularity might be non-singular).

We shall consider germs of complex analytic surfaces (S, x) at a point € S. For convenience,
we shall call (S, x) the singularity of S at x. In all these notes, we shall mainly consider surfaces
which are locally hypersurfaces of C3.

We say that the surface singularity of C® defined at 0 € V C C? by a reduced equation
g : ¥V — C has the same topological type as the surface singularity defined at 0 by the analytic
function f : U — C, if there is a homeomorphism ¢ of an open neighbourhood Uy of 0 in U onto
an open neighbourhood 1 of 0 in V such that

pUoN{f=0})=VoN{g=0}.

We say that the singularity of {g = 0} at 0 has the same analytical type as the one of {f = 0}

at 0, if the local rings
Ofg=03.0 = Of=0},0
are isomorphic.

The surface singularity defined at 0 by a reduced equation f : U4 — C, where U is an open
neighbourhood of 0 in C3, has no moduli if any surface singularity which is a hypersurface at
the point 0 and which has the same topological type as {f = 0} at 0 has the same analytical
type as {f = 0} at 0.

Lemma 2.1. Let

A =C{z1, 29,23} /(f,0f | 0z1,0f | 0z2,0f | Dz3)
be the C-algebra quotient of the local analytic ring C{z1, 22,23} by the ideal generated by the
function f and its partial derivatives Of/0z1, Of/0z2 and 0f/0z3. The algebra A is a finite

dimensional complex vector space if and only if the singularity of {f = 0} at the origin 0 is
isolated.

When the singularity is isolated, we shall denote by 7 the dimension of A. The number 7
is called the Tjurina number of {f = 0} at 0. In the sequel, we shall assume that the surface
singularity {f = 0} at 0 is isolated.

Let 01,...,0; be convergent power series in C{z1, 22, 23} whose images in A give a base of A.

Consider the germ of complex analytic map

d:(C*xC",0)— (CxC7,0)
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defined by
(I)(Z, Alyeees )\7—) = (f(Z) + AoL+ ..o+ Ao A, ,)\7—).

A germ of a map f: (X,z) — (5, s) is called a deformation of a singularity (Y, y) if (Y,y) =
(f~1(s),z) and the local ring Ox , is a flat Og s-module by f (see p. 29 of [3]). Therefore, the
germ of map ® is a deformation of the hypersurface singularity {f = 0} at 0, since the germ
({f = 0},0) is the fiber of ® over 0 and since the local ring Ogsycr o is regular (see p. 123
of [3]), therefore Cohen-Macaulay (see [20] Chap. IV §B and Chap. IV §D Corollary 3), is a
module over the regular local ring Ocyxcr o by @, and the dimension of the fiber of ® over 0 has
the dimension equal to the difference of dimension of the local rings. This last assertion implies
that Ocsycr o is flat over Ocxcr o by ®.

In fact, this deformation is the versal deformation of the hypersurface singularity ({f = 0},0)
(see [27]). It means that, if ¢ : (X,z) — (S5,s) is a deformation of ({f = 0},0), where (5, s)
is non-singular, there is an analytic map o : (S,s) — (C x C7,0) whose tangent map is unique
such that ¢ is the pull-back of ® by o.

Hypersurface singularities are usually distinguished by their Milnor number (see [14] Theorem
6.5 or e.g. [12]):

p = dimc Ogs o/(0f/0z1,0f/0z2,0f/0z3),
the complex dimension of the quotient of Ocs by the ideal (0 f/0z1,0f/0z2,0f/0z3) generated
by the partial derivatives of f.

Note that in general 7 < u. A theorem of K. Saito ([18]) shows that 7 = p, if and only
if after a possible change of analytic coordinates, the reduced equation f of the surface is a
quasi-homogeneous polynomial.

For 0 < n <« € <« 1, we shall call the singularities in the fibers

Yz, \1,...,\) N B(0)

for (z, A\1,...,Ar) € Dy(0), the nearby singularities of ({ f = 0},0), where B.(0) is the open ball
centered at 0 with radius € in C* x C™ and D,)(0) is the open ball centered at 0 with radius 7 in
CxC.

One can prove the following

Proposition 2.1. For any € > 0 small enough, there exists n > 0 small enough, such that,
Jor (z,A1,..., ;) € Dy(0), the multiplicity of the discriminant of ® at the point (z, \1,...,\r)
equals the sum of the Milnor numbers of the singular points of

® (2, \1,..., \r) N B-(0).

Notice that, one can make a natural analytic partition by connected strata of the discriminant
of ® such that the multiplicity of the discriminant is constant on each stratum of the partition.

Even, if one cannot apply the Theorem of [13], one can prove the following theorem by using
the px-theorem of Teissier in [26]

Theorem 2.1. For any € > 0 small enough, there exists n > 0 small enough, such that the
number of topological types of the singularities of the fibers ®~1(z, A1,...,A\;) N B-(0) is finite
for (z,A1,..., ) € Dy(0).

Then we can define
Definition 2.1. A simple singularity is a surface isolated singularity which has no moduli.

It has been proved by V.I. Arnold (see e.g. [2], p.205) that
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Theorem 2.2. A simple surface singularity is analytically isomorphic to one of the following
singularities at 0
22+ 9% + 2" =0 (for n > 1, A, type),

22 + %2+ 2"t =0 (for n > 4, D, type),
2% 4+ 93 + 2 = 0 (Fg type),
2% 4 y3 + ya® = 0 (EB7 type),
2%+ y* + 2° = 0 (Eg type).
We distinguish all these singularities by their Milnor number

p = dimc Ogs o/(0f /0z1,0f/0z2,0f[0z3).

Notice that the equations of simple surface singularities are quasi-homogeneous.

3. RESOLUTION OF SURFACE SINGULARITIES

We first need the notion of point blowing-up.

For simplicity, we shall only consider point blowing-ups on a curve or on a surface. We
consider that our curves or surfaces are reduced. The notion of point blowing-up is general. It
is the same for any set defined by a set of complex analytic equations in an open subset of C.
Such set is called a complex analytic set.

Let a be a point of a complex analytic set X closed in an open subset of C¥. We have a map

A: X\ {a} - PN-1

defined by A(z) = line ax.

It is easy to see that A is an analytic map. However this map cannot be extended at a. A
natural way to find an extension is to replace the set {a} by the limit set of lines through {a}
and a point € X \ {a}. In fact, consider the graph of A in the product space X x PN~1. This
graph is not a closed subset of the product space.

A theorem of Remmert asserts that the closure of this graph in X x PVN—1

is an analytic space
X1. The projections onto X and PV~! define complex analytic maps

e1: X1 — X
)\1§X1 —>IP)N_1.

The map e is called the blowing-up of X at a, the map A; can be considered as an extension
of A since X \ {a} embeds isomorphically into X; through the graph of A. Notice that e; is an
isomorphism of X; \ e;*(a) onto X \ {a}. The points of e;*(a) in PN~! are the lines of CV
contained in the tangent cone of X at the point a, since these lines are the limits of the lines
line ax when = € X \ {a} tends to a on X.

When C'is a curve, if C'\ {a} is non-singular, in general C; might have many singular points.
Their number is bounded by the number of components in the tangent cone of C' at 0.

In the case of plane curves, one can show (see e.g. [28] p. 80-81) that after a finite number,
say 7, of point blowing-ups ¢; : C; — C;_1, one can obtain a non-singular curve Ci..

Let us concentrate on the case of normal surfaces.

In this case, singular points are isolated. Consider a singular point a. Let e; : S1 — S be
the blowing-up of a in S. In general S; is not normal, so the singularities of S; might not be
isolated. A natural idea is to normalize S;. More generally if S is not a normal surface, there
exists a unique morphism v : § — S, up to analytic isomorphism, from a normal surface S into
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S, such that v is surjective and finite and by v the space S \ v~ !(IN) maps isomorphically onto
S\ N, where N is the set of non-normal points of S (see e.g. [4] p. 25).
There is a theorem of R. Walker and O. Zariski (see [29]):

Theorem 3.1. Let e; : S; — S;_1 be the blowing-up of the singular points of S;—1 and n; :
S; — S; the normalization of S;. Suppose that Sy := S, then, there is r > 0 such that S, is a
non-singular surface.

In some cases the surface Sp is normal.

Proposition 3.1. For simple surface singularities, the blowing-up of a simple singularity is a
normal surface which is locally a hypersurface and the singularities of the blowing-up surface are
also simple surface singularities.

This proposition and the Theorem of R. Walker and O. Zariski show that a simple singularity
is desingularized after a finite number of point blowing-ups, because the sum of Milnor numbers
of the singularities decreases strictly after a point blowing-up.

Let e; : S1 — S be the blowing-up of the point a in a normal surface S. Then, as we have
mentioned before

Proposition 3.2. The set efl({a}) 1s the projectivization of the tangent cone of S at a.

This proposition gives us an easy way to find the exceptional fiber e;*({a}) in the case of a
surface which is a complex hypersurface in C3. Suppose a = (a1, as,as). Let

f:fm'i‘fm-i-l'f"w

be the expansion of f in homogeneous polynomials in z; — a1, 20 — asg, 23 — ag. The tangent
cone at a is given by f,(21,22,23) = 0. It defines a projective curve I' in P2. Then, as sets
e'({a}) = {a} x .

In the case of a simple singularity the algebraic set given by efl({a}) is isomorphic to a
projective line, except for A, simple singularities, where it is isomorphic to two transverse
projective lines.

A complex analytic map 7 : S — S is the desingularization or resolution of a surface isolated
singularity 0 € S if

(1) the space S is non-singular,
(2) it is a proper map,
(3) it induces a complex analytic isomorphism of the complement S\ 7'(0) onto S\ {0}.

Another way to formulate R. Walker and O. Zariski result quoted above is

Proposition 3.3. One obtains a desingularization of a surface isolated singularity with the
composition of a finite number of normalizations of point blowing-ups.

If 7 is a resolution of a singularity 0 € S, the fiber 7=1(0) is called the exceptional curve and
the components of 771(0) are called the exceptional components of .

Let 7 : S — S be the desingularization of a simple singularity 0 € S. One can prove that
771(0) is a union of non-singular rational curves.

Each of these curves, isomorphic to a projective line, is embedded in S. Their embeddings is
characterized by their normal bundles in S.

We define the self-intersection of a component D of 771(0) (which a non-singular rational
curve) to be

D.D = degD(/\/’D‘g),
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where ./\/D|5 is the normal bundle of D in S, or equivalently D.D = degp(L(D) ®0;Op) (see e.g.
exercize 6.12 p.149 in [9] or p. 67 of [4]), where £(D) is the sheaf of meromorphic functions on
S having a pole along D. A theorem of Du Val shows that the self-intersection of an exceptional
component is negative.

It is convenient to consider the dual graph of the resolution 7 of a simple singularity 0 € .S,
i.e. the weighted graph whose vertices are the components of 7=1(0) and the number of edges
between two vertices equals the intersection number of the components corresponding to the
vertices and the weight of a vertex is the self-intersection of the components corresponding to
this vertex.

By a theorem of Castelnuovo, one can obtain a resolution of a simple singularity where none
of the exceptional curves have self-intersection —1. So, we may assume that in the resolution
7 the exceptional components have self-intersection < —2. Such a desingularization is called a
minimal resolution of the simple singularity.

One can prove that (S,0) is a simple singularity if and only if there is a resolution where all
the exceptional components are non-singular rational curves with self-intersection —2 and the
dual graph of the resolution is a tree.

This is consequence of a classification Theorem of Coxeter, because we know that the intersec-
tion matrix of the exceptional components is definite negative (Du Val Theorem, see e.g.[15]).
In fact the Theorem of Coxeter gives all the quadratic forms which are definite positive and
whose symmetric matrix has integer entries equal to 2 in the diagonal and 0 or -1 outside (see
e.g. [6] p. 459)

This point is important to recognize simple singularities in simple Lie algebras.

In fact, let 7 : S — S be a minimal desingularization of a simple surface singularity. One
can prove that the dual graphs (without weights) of their minimal resolution are the Dynkin
diagrams (without weights) of the simple Lie algebras A, D, or E,, in the case of the simple
singularities A,,, D, or E, given above in Theorem 2.2.

Ap o OO o)

Dy, O i QO 6)

FEg O O
o

Er O O
o

Eg e O
o

This indicates a relation between simple singularities and simple Lie algebras. We shall explain
this relation below.

4. LIE ALGEBRAS

Most of the concepts described here can be found in [21].

A complex Lie algebra L is a complex vector space with a multiplication [,]; £ x £ — £ which
is bilinear for the complex vector space structure and which satisfies the following axioms:

[z,2] =0 for all z € L,
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[z, [y, 2]] + [y, [z, z]] + |2, [x,y]] = 0 for all x,y,z € L (Jacobi identity).
As a first consequence, Lie algebras are anti-commutative.

Definition 4.1. A Lie subalgebra L1 of a Lie algebra L is a complex vector subspace such that,
for all x,y € L1, we have [x,y] € L.

Notation: Let £ and L2 be two Lie subalgebras of £. We shall denote [£1, Lo] the Lie algebra
generated by the products [by, bo], for all by € £1 and for all by € Ls.

Definition 4.2. An ideal Z of a Lie algebra L is a complex Lie subalgebra such that [Z,L] C T.

Since the first axiom above implies [z,y] = —[y, z], we do not need to distinguish between left
and right ideals and [Z, £] = [£,T].

If £ is a finite dimensional Lie algebra and 7 is an ideal of £, then the quotient £/7 is a Lie
algebra of complex dimension dim £ — dim Z.

A map p: L1 — L5 of complex Lie algebras is a morphism of complex Lie algebras if it is a
complex linear homomorphism and, for any =,y € L1, p([x,y]) = [p(x), p(y)].
Examples.

1. Lie Algebra of vector fields on a manifold (in general infinite dimensional).

2. Lie Algebra of derivations of a ring of smooth functions (idem).

3. Endomorphisms End(V') of a vector space V have a natural Lie algebra structure with

[figl=fog—gof

(finite dimensional if V' is finite dimensional).

We say that £ is an abelian Lie algebra if [£, £] = 0.

Consider the sequence £1 = L, ..., Lit1 := [L;, L],.... We say that L is nilpotent if there is
r > 0 such that £,,1 = 0.
Consider now the following sequence: L1 = L, ..., Liy1 = [L;, Li],.... We say that L is

solvable if there is r > 0 such that £, = 0.

Example. Let V be a finite dimensional complex vector space. Consider the Lie algebra of the
endomorphisms of V. The subalgebra &(D) of endomorphisms which leaves invariant a flag D
of V is solvable.

Lemma 4.1. Let L be a Lie algebra. Let T; and Iy be two solvable ideals of L. Then [I1,Zs] is
a solvable ideal of L.

Then, a Lie algebra £ has a unique maximal solvable ideal R called the radical of L.
Definition 4.3. The Lie algebra L is semi-simple if its radical ideal is {0}.

There is an important characterization of semi-simple Lie algebras using the Killing form.
First notice that a Lie algebra £ has a representation in itself by the homomorphism

ad : L — End(L)

defined by ad(z)(y) = [z,y] for any z,y € L and where End(L) is endowed with the natural Lie
algebra structure mentioned above.

Definition 4.4. The Killing form of the Lie algebra L is the bilinear form of L defined by
< x,y >:=Tr(ad(x) o ad(y)).
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The Killing form is symmetric and associative
Va,y,z € L, < [x,y],z >=< z,[y, 2] > .

Theorem 4.1. The complexr Lie algebra L is semi-simple if and only if its Killing form is
non-degenerate.

Now, we can define
Definition 4.5. A Lie algebra L is said to be simple if its only ideals are {0} and L.

Since the orthogonal of an ideal Z by a bilinear form which is symmetric and invariant, is
an ideal 71 and since the Killing form of a semi-simple Lie algebra is non-degenerate, one can
prove that a semi-simple Lie algebra is isomorphic to the product of its minimal ideals, which
are obviously simple Lie algebras. We have:

If £ is a direct sum of simple ideals £, Lo, ..., L, as Lie algebras, then every simple ideal
of L coincides with one of £;’s. In that case, £ is semisimple.

Proposition 4.1. A complex Lie algebra L is semi-simple if and only if there are simple ideals
L1, Lo, ..., L. of L such that L=L1 D LoD ... D L,.

In fact we have the following more general result.
Proposition 4.2. Any ideal and any quotient of a semi-simple Lie algebra is semi-simple.

A nice property of complex semi-simple Lie algebras is given by the following theorem of H.
Weyl:

Let £ be a complex semi-simple Lie algebra. An element x of L is said to be semi-simple if
ad(z) is a semi-simple endomorphism of £ (i.e. diagonalizable over C) and said to be nilpotent
if ad(z) is a nilpotent endomorphism of L.

Theorem 4.2. Let L be a semi-simple Lie algebra. Every element x of L is uniquely written
s+n where s is semi-simple and n is nilpotent and [s,n] = 0 Any element which commutes with
x commutes with s and n.

Moreover, let p : L — End(V') be a representation of £, i.e. a homomorphism of Lie algebras,
if = is nilpotent (resp. semi-simple), p(z) is nilpotent (resp. semi-simple).
Then,

Theorem 4.3. Fvery finite dimensional representation of a semi-simple Lie algebra is com-
pletely reducible.
5. CLASSIFICATION OF SIMPLE LIE ALGEBRAS

Here we are going to give a classification of complex simple algebras (see e.g. [21] or [10]).
The normalizer of a subalgebra £’ of £ is the biggest subalgebra of £ which contains £’ as
an ideal, i.e. {z € L, [z,L'] C L'}.

Definition 5.1. A subalgebra of a Lie algebra L is called Cartan subalgebra if it is milpotent
and equals its normalizer in L.

Then,

Theorem 5.1. Any finite dimensional Lie algebra L has a Cartan subalgebra.
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Let x € L. Consider the Lie subalgebra of L:
Lo(z) = {y € L | 3k, (ad(2))"(y) = 0}.
Notice that z € Lo(x).
Definition 5.2. The element x is reqular if the dimension dim Ly(x) is the smallest possible.
Then, one can prove:
Lemma 5.1. Ly(z) is a Cartan subalgebra if and only if x is reqular.

Observations. If the Lie algebra £ is nilpotent, then £ is a Cartan subalgebra of itself.

Any two Cartan subalgebras of £ are conjugate.

Any Cartan subalgebra of £ equals Ly(x) for some regular element x.

One can define the rank of a semi-simple Lie algebra as the dimension of a Cartan subalgebra.

We also need some important facts about representations of nilpotent Lie algebras: Let N
be a nilpotent Lie algebra. Let 91 be a finite dimensional complex vector space which is a
N-module, that we shall call a finite dimensional A/'-module.

Definition 5.3. Let N be a nilpotent Lie algebra. A weight of a finite dimensional N -module
M is a linear map X : N — C for which there is m € M, m # 0, such that

Vn e N, Ir > 0, (ad(n) — X(n))"(m) = 0.

Proposition 5.1. Let N be a nilpotent Lie algebra. A finite dimensional N -module M has a
finite number of weights which all vanish on [N, N7.

Let N be a nilpotent Lie algebra. Let o be a weight of a finite dimensional N-module 90.
Define 91, to be the submodule

{m e M|V¥n e N,3r > 0, (ad(n) — a(n))"(m) = 0}.

Then, M = § M,

Let $ be a Cartan subalgebra of the finite dimensional Lie algebra £. Since [, L] C L, the
Lie algebra L is a §-module. The Cartan subalgebra $) being nilpotent, if A is the set of weights
of the $ -module £, we have

L= @aeA[ra-

Definition 5.4. We call the set A\ {0} the set of roots R of L and, for a € R the space Ly, is
the corresponding root space.

Consider the case L is semi-simple and finite dimensional over the field of complex numbers.
Then
(1) Lo =
(2) [%, 53] = 0 ie. 9 is abelian;
(3) if « is a root, then —« is a root and if k« is a root, then, k = +1 or — 1;
(4) assume that o and 3 are linearly independent roots, if a+ 3 is not a root, then [L,, Lg] =
=0. If a + f is a root, then [Lq, Lg] C Latg. Also [Lo, L_o] C $H;
(5) every element of ) is semi-simple;
(6) the restriction to $ of the Killing form is non-degenerate;
(7) L=9HDrer L, and dim L, = 1.
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Now let us choose a Cartan subalgebra $) of the simple Lie algebra £. Let R be the root
system defined by £). Choose a basis among the roots, say r1,...ry, where £ is the rank of L.
Any other root is a rational linear combination of this basis. Let us denote by $g the Q-vector
space that they generate in §.

The Killing form defines a natural isomorphism between $) and its dual $* such that

r(h) =<r*h >.

Let us identify $ and its dual $* by this correspondance and write r instead of r*. It can be
shown by this identification that the roots generate $x.

One can show that the restriction of the Killing form to $q is definite positive.

Now, let us define an ordering in $g, e.g. a >bifa—b= Zle i, the first A\; # 0 is > 0.

By defining an ordering on $)q, we define the positive roots R and the negative roots R_.
Choose the fundamental roots to be positive roots such that they are not sum of two positive

roots. The set of fundamental roots is also a basis p;....,ps of Ho.
We denote
B =9 Drer, Lr,
N = Srer, Lr,
N_ = Drer_L,.

Lemma 5.2. (1) M and N_ are nilpotent subalgebras of L;
(2) B is a solvable subalgebra of L.

Definition 5.5. The Lie algebra B is called the Borel subalgebra of L associated to the Cartan
subalgebra $ and and the root system R.

For a finite dimensional simple Lie algebra £, we have the decomposition B = § & I, where
I is a nilpotent subalgebra of £, which is called Levi decompostion. One can show:

Theorem 5.2. Let L be a finite dimensional complex simple Lie algebra. The root systems Ry
and Ro associated with two Cartan subalgebras $H1 and $Ho of L respectively are isomorphic.

This theorem shows that, given a simple Lie algebra £, we may consider any root system of

L.
Lemma 5.3. For distinct fundamental roots, we have < p;,p; >< 0.

We associate to each root a hyperplane H, of $)g orthogonal to r for the Killing form. We
have the symmetry of $g associated to this hyperplane

Wy 2 ~6Q - SjQ7
given by
2<r,x >
wp(r) =0 — ———r
<ror>

It can be shown that, Vr,s € R, w,(s) € R.

Definition 5.6. The group W generated in the group of linear automorphism of § by the w,,
forr € R, is called the Weyl group of L.

It can be shown that W is generated by the fundamental reflections wy, ,...,wp, but is not
generated by any proper subset of the set of these fundamental reflections.
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Lemma 5.4. The numbers
_ 2<pi,pj >

ivj =
< Ppi;Pi >
are integers.

These numbers A; ; are called the Cartan numbers. The Cartan matriz is the matrix whose
entries are the A; ;’s.

Corollary 5.1. The cosine of the angle 0; ; between p; and p; satisfies
A A
2 9. )
cos”(6:5) = —* ==
so if i # j, cos?(6; ) = 0,1/4,1/2,3/4.

The Dynkin diagram without weight of the finite dimensional simple Lie algebra L is the graph
given by vertices associated to each fundamental root p; and with 4 cos? (0;,5) edges between the
vertices (p;) and (pj).

In this way one obtains the graphs A,, B, = C,, D,, Fg, E7, Eg, , Fy, Go which are the
Dynkin diagrams without weight of the simple Lie algebra L of type A,,, By, Cn, Dy, Eg, E7,
Es, Fy, G2 (see [10] §5 and 6 of Chapter IV).

However, when the Cartan matrix is symmetric, the theorem of Coxeter, quoted above at the
end of the section 2, shows that we only have the Dynkin diagrams (without weight) which corre-
spond to the simple Lie algebras of type A,,, Dy, Eg, E7, and Eg, in which cases 4 cosQ(Qi,j) =0,1:

Anp o OO o]

Dy, o i QO o)

FEg O O
o

Er o O
o

Eg O O
o

These are precisely the same diagrams which are the dual graphs of the exceptional fiber of
the minimal resolution of simple singularities.

The relation between simple singularities and simple Lie algebras is explained by Grothendieck’s
conjectures.

6. GROTHENDIECK’S CONJECTURES

Consider a simple complex Lie algebra G of type A,,, D,,, Eg, E7 or Eg and G the corresponding
simply connected simple Lie group. Let us fix a Cartan subalgebra £ of G and 6 a Borel
subalgebra of G. Let B the corresponding Borel subgroup of G whose Lie algebra is 8.

One has a natural map v of G into /W, where W is the Weyl group, defined, for x € G, by:

v(z) = [conjugate of the semi-simple part of = in $ modulo W].
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v:G — /W
r = (71(1')7"'7%"(1‘))’

where 1, ...,7, are the homogeneous G-invariant polynomials generating C[G]¢. The map 7 is
called the adjoint quotient map.

Each fiber of « consists of finitely many orbits, has codimension r in G and contains an orbit
which is dense in the fibre and which coincide with the non-singular points of the fiber (see [11]
or e.g. [22], p.31 for Lie groups).

Definition 6.1. The fiber v~1(v(0)) is called the nilpotent variety of G.

We denote by N the nilpotent variety of G. By [11] Theorem 0.8, N/ has normal singularities.

The first part of Grothendieck’s conjectures consists in stating that the morphism ~ has a
simultaneous resolution (see [22] §4).

Let us remind what is a simultaneous resolution of a morphism.

Definition 6.2. A simultaneous resolution of a morphism of reduced algebraic varieties x :
X — S is given by a commutative diagram

S, g

7

s — >3

such that

(1) 0 is smooth, i.e. flat with non-singular fibers;

(2) ¥ is finite and surjective;

(3) ¢ is proper;

(4) for allt € S', the morphism oy : 07 1(t) — Xy(1) induced by ¢ is a resolution of singu-
larities of the reduced fiber Xy ) := X L((t)).

As above for surfaces, if X is an algebraic variety, an algebraic morphism 7 : X — X is a
resolution of singularities, if (1) X is non-singular, (2) 7 is proper, (3) 7 induces an isomorphism
of X \ 771(X) onto X \ &, where ¥ is the subset of singular points of X.

Let H be a closed subgroup of the simple Lie group G. We have the principal fiber bundle
G — G/H over the base G/H with structure group H. Let X be a reduced variety on which
H operates regularly. We can define, for G — G/H, the associated fiber bundle G' x X over
G/H with fiber X as the quotient of G x X by the H-action

HxGxX —-GxX,

given by (h,g,z) — (gh™! hz) (see e.g. [22] 3.7).

Now, suppose that H is a Borel subgroup B of G. Since B operates on its Lie algebra B by
the adjoint map, we can define the non-singular space G xZB. Since B is a Lie subalgebra of G
and the inclusion B C G is B-equivariant, there is a G-equivariant inclusion G xZ 8B — G xB g
(see §3.7 of [22]). Lemma 1 of §3.7 of [22] shows that, since the B-action on G is the restriction
of the adjoint action which is a G-action, by considering the diagonal G-action on G/B x G.
We obtain that G x?Z G is G-equivariant isomorphic to G/B x G. Therefore G xZ 9B embeds in
G/B x G.
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In [22] §4, P.Slodowy proves that there is a natural smooth map 7 : G x® 9B — §. The
preceding argument gives, by the second projection of G/B x G onto G, a map:

GxBpbg
Then P. Slodowy shows that the following diagram is commutative
G IS D& ”—;. G

3] 3] ﬂ V

The following result conjectured by A. Grothendieck [8] is proved by P. Slodowy in [22].
Theorem 6.1. A simultaneous resolution for -y is given by the preceding diagram.

In [23] (Proposition 2.1 and 2.5) T. Springer gave a resolution of the nilpotent variety N :=

7~1(0) of G:

GxPnl N,
where 91 is the subalgebra defined in Lemma 5.2. The map ¢ given above is a generalization of
Springer resolution, since it gives a resolution of the fibers of ~.

If y € NV, by definition the conjugate of the semisimple part of y in £ modulo the Weyl group
W is 0, so the semisimple part of y is 0. Let Ad be the adjoint representation of G, i.e. the
map G — Aut(G), g — Ad(g), where Ad(g) is the derivative at the unit element of G of the
conjugation in G by g. Let x € G. The semisimple part of Ad(x)(y) is also 0. The algebraic
group G operates on the variety N' by G x N' — N, where (z,y) — Ad(z)(y). The variety N is
a finite union of orbits of the action of G.

One of its orbits is dense in N, namely the orbit composed of the non-singular points of A/ as
proved by R. Steinberg in [24]. The elements of this orbit are called regular elements of N'. In
the singular subset of A/, R. Steinberg showed that there is a codimension 2 orbit in N which
is composed of singular points of N called subregular elements (see 3.10 of [25]). Let y be a
subregular element. Let X be a non-singular slice of the subregular element orbit O, i.e. a
nonsingular complex analytic submanifold of the algebra A of codimension dim O transverse in
G to O at a subregular element.

Remark 6.1. Let x € G. The dimension of the orbit G.x is even (see e.g. [11] Proposition 0.5).

Here we are interested in the simple singularities. So we consider a Lie algebra G of type A,
Dn, EG, E7 or Eg.
Grothendieck [8] (see also [5]) also conjectured that:

Theorem 6.2. With the above notation, let the simple Lie algebra G be of type A, Dy, Eg¢, E7
or Eg. Let y be a subreqular nilpotent element and X a transversal slice at y to the orbit G.y.
The germ of surface X "N at y is a simple surface singularity whose type is A,, D, or E, for
the Lie algebra of the same type.

Furthermore, in these cases the map v induces a germ of map (X,y) — (9/W,0) which is the
versal deformation of the surface singularity (X NN, y).

A sketch of proof was given by E. Brieskorn in [5]. A complete, but different, proof was given
by H. Esnault in [7].
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A consequence of the Theorem 6.1 above is that, if 3 is a nilpotent subregular element of N/,
the fiber ¢~1(y) is the exceptional curve of a resolution of the surface singularity (X N A, y).
H. Esnault proved that this resolution is minimal and the dual graph of the exceptional curve
¢~ (y) is precisely the Dynkin diagram of the simple Lie algebra G.

Other results concern non-isolated singularities. One may consider some other irregular point
x of N and a slice & transverse to the orbit G.x at x. The singularity &N G at x has dimension
2k where r + 2k is the codimension of the orbit G.xz in G and r is the rank of the group G, i.e.
dim §. In general these singularities are not isolated. The fibers of the Springer resolution of N/
have been studied by G. Pagnon (see e.g. [17]).

As in the Theorem 6.2 above, there should be a notion of G-versal deformation. In that case,
if X is a non-singular slice of G.z at x, where z is an irregular nilpotent element, the map ~
should define a G-versal deformation of X,z — ($/W,0).

More surprisingly in [16] simple elliptic singularities of surfaces of type Ds (see definition in
[19]) are obtained by intersecting the nilpotent variety of the Lie algebra G = sl(2,C) & sl(2,C)
with a 4-dimensional special linear submanifold of G. It is not known which type of singularities
can appear by making simple constructions of this type.
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