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PROBLEM OF CONSTRUCTING A STEP FUNCTION FLUCTUATING
LEAST AROUND A GIVEN FUNCTION

BAHTIYAR BAYRAKTAR1

Abstract. It is well known that step functions are often used in regulation and optimal control.

Nevertheless, to our knowledge, this problem has not been raised previously. Therefore, the

problem of constructing a step function, least fluctuating around a given function (in the sense

of integration), is the main point of this article. This is a multiextremal task. In particular,

such problems mostly arise in the design.

In this paper formulated a mathematical model of the problem. To solve the problem devel-

oped an effective method of shrinking neighborhoods. Moreover, for algorithm of the method

was developed software.

Keywords: step functions, calculus of variations, optimal control, pipelines, pumping stations,

regulating tanks.
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1. Introduction

A function with a value remaining constant at each of a series of finite intervals is called step
function. It is known that step functions are used in modeling of various events and processes.
It is a function which is frequently used especially management systems. For this reason, the
problem of constructing a step function in the sense of integration least fluctuating around a
given function arises. This problem is a problem arising in mathematical modeling of Water
Supply Systems (WSS). It is especially observed in the problem of creating a graphic indicating
the working of pump station for 24 hours so that the volumes of water tanks will fall to minimum
level. Related to this problem, the problem of construction of the step function was put forth
for the first time by Bayraktarov B.R. and Kudayev V. Ch. [4].

WSS as a complex system is a system composed of pipelines (water supply network); pressure
and regulation plants (pump station and water tanks). The highest cost part of the system
is the pipelines. For this reason, many researchers [2, 3, 6, 9, 10, 13, 14, 15, 19, 20] have
examined the problem of calculating the most appropriate parameters of water supply networks
(hydraulic parameters of pressure and pipes at the top of the network). These parameters are
the values composing the parameters of the plants of the system. Many effective methods have
been proposed related to the solution of this problem. For example, linear programming (LP)
[2, 9], dynamic programming and gradient method in networks with many sources [5, 20] and
various genetic and hybrid algorithms [6, 10, 14, 15].

To minimize operating costs, there are studies related to the planning of working of pump
stations and the determining of the volume of the tank. Of these, the method combined based
on the gradient and punishment methods (U. Shamir [19]), the heuristic method (Ormsbee, L.
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E., Lansey, K. E. [13]), dynamic programming (Lansey, K. E., Awumah, K. [11]), non-linear
programming (Ilemobade, A. A., Manson, N. J., Stephenson, D. [7]) and different methods
based on various genetic algorithms (Savic, D. A., Walters, G. A., Schwab, M. [17], Boulos,
P. F., Wu, Z., Orr, C. H., Moore, M., Hsiung, P. [5], Thomas, D., Lopez-Ibanez, M., Prasad,
T. D., Paechter, B. [12], Seleka, ., Benea, J. G., Hosb, C., [18] ) can be cited as examples.
Besides these, Sarbu, I. and Kalmar, F. ([16]) also suggested that the pump station should work
completely automatically for not using the tanks. The researchers in their study ([5, 12, 18])
made a more comprehensive analysis of current methods and algorithms related to the problem.

As Keedwell, E. and H. Soon-Thiam ([10]) state, in recent years genetic algorithms have
become one of modern methods in the organization of technical systems and especially WSS’s.
The initial solution of genetic algorithms is generally random. This selection “might not be
good” and later might not produce an effective solution at a required level. Building a ”good”
initial solution for genetic algorithms preserves the place of the problem on the agenda.

WSS a very complex system and the effectiveness of this system depends on many factors.
Naturally it is not possible to include all of these factors in a mathematical model. As stated
above, the highest cost part of the system is the water supply network. For this reason, what is
the most effective in the system are the parameters of the network (amount of pressure at the
top of the network and hydraulic parameters of the branches). Another part of the system –
pressure and regulating plants (pump station, water tanks) are the parts which are in interaction
with only one another. The effective parameters of this part are pressure amount (height of the
tank lever) and the regulating volume of the water tank depending on the working graphic
of the pump station. For this reason, the mathematical modeling of WSS is composed of two
problems: one of these – convex programming problem (calculation of the optimal parameters of
water supply network), and the other one is variance calculation problem (creating the graphic
indicating the working of the pump station making the regulating volume of the water tank
minimum).

This study shows that the considered variation problem (construction of a step function) is
multiextremal and, at the same time, is a minimax problem. It was also shown that the local
minimum solution found has global minimum. An effective method related to the solution of
the problem was suggested:

• Since the problem is multiextremal, not one but K number of most appropriate initial
(rough) solutions can be built;

• By applying the method of “narrowing intervals” to each initial solution, the most ap-
propriate solution was produced.

The results obtained as a result of the numerical experiment made showed that the suggested
method is highly effective in terms of both the value of the objective function and the duration
of calculation time [4].

It was concluded that the method suggested for the solution of the construction problem of
the step function in mathematic modeling of complex systems including WSSs as a heuristic
method can be used in building ”good” initial solutions in various genetic algorithms.

2. Mathematical model of the problem

Without going into technical details, we consider the problem of constructing a step function
x(t) on an interval [a, b] having at most n steps, in the integral sense of fluctuating about a given
function g(t):
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max
a≤α≤b

α∫

a

[g(t)− x(t)] dt− min
a≤β≤b

β∫

a

[g(t)− x(t)] dt → min (1)

b∫

a

g(t)dt =

b∫

a

x(t)dt. (2)

In the task values of α, β and c1, c2, . . . , cn,t1, t2, . . . , tn−1, parameters of the step function should
be determined

x(t) =





c1, a ≤ t < t1,

c1, t1 ≤ t < t2,
...
cn, tn−1 ≤ t < b.

The defined problem is a minimax problem defined

max
a≤α≤b

α∫

a

[g(t)− x(t)] dt− min
a≤β≤b

β∫

a

[g(t)− x(t)] dt = max
a≤α≤b

α∫

a

[g(t)− x(t)] dt+

+ max
a≤β≤b

a∫

β

[x(t)− g(t)] dt ⇒

⇒ max
a≤α≤b
a≤β≤b




α∫

a

|g(t)− x(t)| dt +

a∫

β

|g(t)− x(t)| dt


 = max

a≤α≤b
a≤β≤b

α∫

β

|g(x)− x(t)| dt

as

max
a≤α≤b
a≤β≤b

α∫

β

|g(x)− x(t)| dt max
a≤α≤b
a≤β≤b

∣∣∣∣∣∣∣

α∫

β

[g(x)− x(t)] dt

∣∣∣∣∣∣∣
⇒ max

a≤α≤b
a≤β≤b

∣∣∣∣∣∣∣

α∫

β

[g(x)− x(t)] dt

∣∣∣∣∣∣∣
→ min (3)

with the observance of a ratio of the balance (2).
As far as we know, the task has not been previously put forward, though regulation and

optimum control step functions have often been used.

3. Problem of determining optimal regulating volume of water in WSS’s

In pipeline systems (water, oil, gas pipelines, etc.), an obligatory element is the tanks used for
storage, clearing and further transportation of substance and pump stations. Tanks and water
towers as regulating capacities everywhere are used as systems of water supply of settlements.
Therefore, definition of the regulating volume of tanks is a practical problem. Moreover, defini-
tion of the minimum volume will allow reducing expenses for building of these constructions.

The regulating capacity of tanks depends only on the hourly schedule of consumption and
from the schedule of work of pump stations of system. In practice, this volume is defined by
combination of these two schedules.
At each hour every day, a certain percent from consumption total for days and this quantity in
intervals [ti, ti+1], i = 1, 2, . . . , 23 is consumed which is considered conditionally constant, i.e.
the schedule has a step appearance (see Figure 1).
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Figure 1. The hourly schedule of consumption.

Unlike the consumption schedule (about 24 steps) on specifications on operation, the schedule
of work of pump station can have no more than three – four steps. A case when the schedule
of consumption within days uniform (or it is close to it) does not represent interest (in this case
the regulating capacity it is equal to zero). In other cases, it is possible to define the schedule
of work of pump station so that the regulating volume will be minimum and fulfill necessary
requirements.

In Figure 2, both schedules (a red line – the schedule of work of pump station) are presented.
On this schedule, light painted area is not sufficiently giving pump station and dark painted
area is a superfluous giving.

Figure 2. The combined schedules.

The working principle of the system consists of the followings: water at pump station insuf-
ficiently given to the pipeline, deficiency of substance moving in system from the tank (Fig.3a),
and surplus giving from pump station – surplus arrives in the tank (Fig. 3b).

Necessary condition of definition of the schedule of work of pump station – the algebraic sum
of the areas of the painted areas should be equal to zero. Within day’s water which arrives in the
tank follows from it, naturally, during any moment of time in the tank, the greatest quantity of
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water will collect. It is obvious that values of the regulating volume of the tank are the greatest
value of current water – supply in the tank [1].

For the decision of this problem in Karambirov S. N. ([8]) as one of ways of reception of the
schedule of characteristic modes, it is offered to sort the schedule of water consumption with its
subsequent averaging on several characteristic intervals. For definition of intervals of averaging,
the scheme

Figure 3. The working principle of the system.

of dynamic programming is used. The basic disadvantage of the offered method, in my opinion,
is the averaging of the schedule of consumption on the allocated characteristic intervals.

4. The problem formulation

At substantial level, the problem consists of the followings: at the known daily hourly schedule
of consumption to define the schedule of work of pump station so that the regulating volume of
tanks was minimum.

Let
n – Quantity of steps of work of pump station;
q = {qi}–The set sizes of expenses of water consumed by system at each o’clock
(a set in percentage of the total of water consumed within days);
x =

{
x(j)

}
–Required sizes of expenses of water (in percentage), submitted pump station in

system at each o’clock j the period of its work;
t = {tj}–Duration of steps of work of pump station;

where, i = 1, 2, . . . , 24, j = 1, 2, . . . , n.
As it has been stated above, the regulating volume of the tank is the greatest current water

– supply which is available in the tank during any moment of time of days. Hence, from all
possible variants of the schedule of work of pump station, we should find the schedule of work
having the minimum greatest value of a current water – supply in the tank. Thus, we have a
problem on a minimum from maxima.

For convenience of record of a problem, we will enter an additional designation

xi = x(j), ∀i ∈ (
j−1∑

m=0

tm,

j∑

m=1

tm], t0 = 0, j = 1, 2, . . . , n, i = 1, 2, . . . , 24 (4)

then the regulating volume of the tank will be
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W (q, x, t) = max
p1∑

i=0

(qi − xi)−min
p2∑

i=0

(qi − xi) → min, p1, p2 = 1, 2, . . . , 24, (5)

where t time moment on which the water – supply in the tank is defined.
Obviously, the first restriction is the sum of durations of all steps of work of pump station 24

hours should be equal, i.e.

n∑

j=1

tj = 24. (6)

The second restriction follows from a necessary condition of definition of the regulating volume
– the algebraic sum of the areas of the top and bottom shaded areas should be equal to zero
and if t∗j - the moments of transition of the schedule on other step of work

n∑

j=1




t∗j∑

i=t∗j−1+1

(qi − xj)


 = 0,

where

t∗j =
j∑

j=1

tj , j = 1, 2, . . . , n, t∗0 = 0

opening this sum, we obtain the following equation

t∗1∑

i=t∗0+1

(qi − x1) +
t∗2∑

i=t∗1+1

(qi − x2) + . . . +
t∗n∑

i=t∗n−1+1

(qi − xn) = 0

or

24∑

i=t∗0+1

qi −
n∑

j=1

(t∗j − t∗j−1)xj = 0,

Let’s definitively receive the second restriction

24∑

ı=1

qı =
n∑

j=1

tjxj , where tj = t∗j − t∗j−1. (7)

Taking into account (5) - (7) and also considering that xj ∈ [qmin, qmax] mathematical model of
a problem, it is possible to present the values of required variables as a kind:

W (q, x, t) = max
p1∑

i=0

(qi − xi)−min
p2∑

i=0

(qi − xi) → min, p1, p2 = 1, 2, . . . , 24 (8)





n∑
j=1

tjxj =
24∑
ı=1

qı,

n∑
j=1

tj = 24,

qmin < xj ≤ qmax,

(9)

where qmax = max
t
{qt} , t = 1, 2, . . . , 24, j = 1, 2, . . . , n− 1.
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5. Method and algorithm scheme of problem solution

It is obvious that the bigger the number of steps, the less the variation of the required function.
However, it is also likely that any increase in the number of steps significantly increases the
discounted cost of the entire real-world system. Therefore, the acceptable maximum number
of the steps of the required functions is limited. For instance, this number for WSSs (pump
stations – regulating tanks) is limited by four steps.

As noted in the article by Yelsakov S.M. and Shyryaev V.I. [21], any impossibility to use an
analytical approach for solving the problems of multiextremal optimization results from either
complicated representation or algorithmic setting up of objective function and/or limitations.
In both cases, the objective function is considered as a ‘black box’ and the main factor of solving
the problem is the time of calculation, i.e. the best solution is obtained within a reasonable time
length. This factor of “reasonable time length” can be different for different real-world systems.

As it is seen from the statement of the problem, it is a minimax problem. We will testify
that the problem has an absolute minimum for lengthwise fixed series of steps of the required
function.

Really, let the representation (3) be used and show that this problem comes down to the
linear programming problem.

Let an arbitrary decomposition of interval [0; 24] into n parts (steps) be given by points
τ1, τ2, . . . , τn−1 and k, l be two arbitrary points out of [0; 24], where k ∈ [τm−1, τm] and l ∈
[τp−1, τp].
Then the problem in the lengthwise fixed series of steps is as follows:

W (c1, c2, . . . , cn) → min . (10)

A consequence of properties of the module (3) is

τm∑

ı=k

gi − cm(τm − k) +
τm+1∑
ı=τm

gi − cm+1(τm+1 − τm) + . . . +
l∑

ı=p−1

gi − cp(l − τp−1) ≤ W, (11)

−



τm∑

ı=k

gi − cm(τm − k) +
τm+1∑
ı=τm

gi − cm+1(τm+1 − τm) + . . . +
l∑

ı=p−1

gi − cp(l − τp−1)


 ≤ W,

(12)

c1τ1 + c2(τ2 − τ1) + . . . + c2(b− τn−1) =

24∫

0

g(t)dt, (13)

k = 1, 2, . . . , n; l = 1, 2, . . . , n − 1; k 6= l, where - the sought step values (flow rates), W – the
sought optimal functional value.

The system of inequities (11), (12) contains 2n(n − 1) linear inequities, i.e. this is a linear
programming problem with respect to the unknown c. Consequently, at the lengthwise fixed
series of steps the local minimum of the problem is then an absolute minimum; at the same time
this means that the problem is multiextremal.

Because the problem is not only minimax but also multiextremal, the objective function is
defined algorithmically; therefore, any analytical methods of optimization are not suitable; in this
context the problem is considered as a combinatorial one, namely the problem on permutations
(exhaustive). Unfortunately, no such properties of extremum have been discovered to enable us
to reduce significantly the number of fingering when solving the problem.
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It is known that the problem of the calculus of variations often decide first on a coarse grid, and
then in the vicinity of the solution to decide on a fine grid. Such an approach makes it possible
to reduce significantly the search time for the best solution. The suggested method represents
the modification of this method and, different from this method, it involves the consequent
narrowing of the neighborhoods obtained at the latest iteration of the problem solution. The
narrowing of the neighborhood and solving the problem therein is made with the increasing
accuracy until a solution with the given accuracy is obtained. Herewith the solution is sought
by a directed exhaustive search (in each neighborhood) each time. The number of exhaustions
of the solutions in each of ever-more narrowing neighborhoods remains approximately the same
(selectable initially by trial method when selecting the step in the first (rough) grid. Each next
neighborhood involves one step of previous iteration. Moreover, in view of that fact that the
problem is multiextremal, the descent is made simultaneously from several initial solutions.

For each of initial solutions, any iteration is stopped when on two consecutive runs within
the whole interval of time [0; 24] the value of object function will differ by not more than given
accuracy of the problem solution.

Solving the problem (general algorithm of solution is represented in Fig. 4.) is made in three
stages.

At the first stage, the K number of the best rough solutions is built on full set of valid
values of water discharge. For this purpose, the search interval [qmin, qmax] is consecutively

decomposed into the N parts for each of them with step (∆x)(k) =
qmax − qmin

N
(here k =

1, 2, 3, . . . , K, N = k + 3) all kinds of couples, (t, x) meeting the conditions of the problem
are generated and the best rough value of the sought function is determined out of them.

At the second stage, an iteration process is built for each of the K solutions at each step
which search area of water flow rate values for each sought period of [t(k)

p , t
(k)
p+1] is to be given

separately by intervals, [x(k)
p − (∆x)(k), x

(k)
p + (∆x(k))] in which, at step

2(∆x)(k)

N
, all kinds of

couples (t, x) are generated and the best solution is calculated. This process runs on until the
given accuracy of the required solution is achieved at two consecutive iterations.

At the third stage, the minimal one that is the best solution of the problem is selected
among the obtained K solutions.

At each stage, all kinds of possible pairs (t, x) meeting the conditions of the problem are
generated by the directed exhaustion.

Let at the i-th step of solving the problem t(i) = {ti1, ti2, . . . , tin−1}−vector of free variable
values of time (length of the periods), and, corresponding to this vector, the vector of free
variable values of flow rates x(i) =

{
xi1, xi2, . . . , xin−1

}
which components are determined by

the relation xir = mir∆x, where r = 1, 2, . . . , n − 1, and mir - natural numbers, ∆x - step of
change in x, and the step in time for this problem is fixed and equal to one.

Then, the following can be expressed from the limitations (6)

xin =

∑24
j=1 qj − t(i) · x(i)

ti4
, and tin = 24−

n−1∑

j=1

tij ,

for various natural numbers
{
mı1,mı2, . . . ,mın−1

}
with repetition (as the equation of the values

of sought variables x is assumed), each of which belongs to interval
[
1,

∥∥ qmax

∆x

∥∥]
and at which

xin ≤ qmax. Any repositioning of these natural numbers is allowed. It is not difficult to determine
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Figure 4. General scheme of algorithm.

that the maximum number of possible variations will be approximately equal

(n− 1)!C̃n−1
24 · (n− 1)! · C̃n−1

s =
(22 + n)!

23!
· (s + n− 2)!

(s− 1)!
,

where s =
∥∥ qmax

∆x

∥∥, and C̃n−1
s number of combinations with repetitions and, as it was said before,

n<<24.
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For fixed values of water consumption (x(i))and the duration period (t(i))is calculated for each
hour the amount of water in the tank [21]. To calculate the volume of water in the regulatory
capacity at any point in time as the reference point should be taken that point of time p, where
the value of

∑p
j=1(qj − xj) has the lowest value.

By assuming that at the moment of time t
′
the least value (14) is achieved, then in order to

have the water stock at any other moment of time tthe sequence is constructed {wt}:

wt = wt−1 + (xt − qt),

here

w0 = w24, t =
{

l, if l ≤ 24,

l − 24, if l > 24,
and l = t

′
+ 1, t

′
+ 2, . . . , t

′
+ 23.

The value of regulating volume at the i-th iteration is calculated from the relation

Wi = max
1≤t≤24

{wt} − min
1≤t≤24

{wt} .

6. Numerical experiments

The conducted numerical experiments showed high efficiency of the problem algorithm from
the point of view of both time required for calculation and the obtained best value of functional.
The calculation results are represented for one of examples (Fig. 5).

The calculation file f01.txt that contains the values of consumption as percent of the total
water flow rate, accuracy of solution (ε = 0.001) and number of initial solutions (K= 9 ) is
selected on Input Data bar.

“Table of Target (Output Data)” bar represents both the basic data (columns “Time” –
time period and “Consumption” – consumption value in percents), and the calculation results
(columns “Delivery” – delivery value, “Stock” – integral variation of function and “Stock +” –
accumulation of water in the tank).

The bars “Rough solution” and “Thin the solution” represent in sequence the current rough
value and thin solution of the problem for each value of N.

The bar “plot” represents three plots corresponding to the columns “Consumption”, “Deliv-
ery”, and “Stock”.

The bar “Output Data” displays the optimal solution and total consumption in cubic meters.
The maximum and minimum values of functional are displayed in the column “Stock”, and

in column “Stock +” – an optimal solution (W =1.114%) of the problem; the tanks appeared
to be empty (stock is equal to zero 0) in the same column within the period of 16 – 17 pm.

The bottom part of the form represents the number of conducted iterations 37, and the time
of calculation 41 sec.

For this example (Fig. 6.), 14 initial solutions are constructed by decomposition of the search
interval into N = 5, 6,. . . ,18 parts and for each of them the best solutions are obtained. For
the illustrative purposes in Figure 6, a plot is represented showing the changes in value of the
best solution depending on the number of decompositions of the search interval. As is clear
from the results of the solution, the best value of functional at N=10 (value of functional W =
1.1135662) and at N=17 (value W = 1.113544) differ by less than 10-4.

The screen forms (Fig. 7, 8) below represent the results of solving the problem for test cases
for which an absolute minimum was found.
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Figure 5. Screen from the program.

Figure 6. Best solutions constructed based on 14 initial solutions.

7. Some discussions

It is evident that the finer the decomposition of an interval is, the better solution is; but
the numerical experiments showed that the problem solution does not change practically at a
significant increase in number of initial solutions and number of parts of the search interval
decomposition, respectively.

The Table 1 below represents the summarized data of iteration processes (6 ≤ N ≤ 35, N = 50
and N = 100). For the illustrative purposes, the same data are represented in the form of a plot
in Fig. 9. In the table the values of N (interval decomposition), at which the best solutions of
approximately one order are obtained, are in bold is selected in Input Data bar. If it is assumed
that the value W = 1.113485 obtained at N = 28 is the optimal value of the functional then it
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Figure 7. For 2-step plot of consumption the absolute optimum is found to be W=0.000 in course of 24

iterations. The number of given initial solutions 5, time of calculation is 14 sec.

Figure 8. For 4-step plot of consumption the absolute optimum is found to be W=0.000 in course of 58

iterations. The number of given initial solutions 7, time of problem solution 37 sec.

is seen from the table that the problem solution of such order was obtained at less N (N = 10,
17, 19 etc.).

All this is observed also for each of nine test cases. In my opinion, this fact demonstrates
the efficiency of the suggested algorithm since the possibility to decrease the N value means a
multiple reduction of the problem time.
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Table 1.

Interval
partition
N

Rough
solution
(W0)

Thin so-
lution
(W)

Interval
partition
N

Rough
solution
(W0)

Thin so-
lution
(W)

6 1.77700 1.141008 22 1.26909 1.140800
7 1.64003 1.149718 23 1.18561 1.140013
8 1.64003 1.116047 24 1.19796 1.115170
9 1.64003 1.119536 25 1.20376 1.113587
10 1.64003 1.113566 26 1.21183 1.130306
11 1.64003 1.140183 27 1.21932 1.113523
12 1.64003 1.143453 28 1.22629 1.113485
13 1.64003 1.143671 29 1.23280 1.142616
14 1.64003 1.140111 30 1.23889 1.117425
15 1.64003 1.140018 31 1.24459 1.154496
16 1.64003 1.140079 32 1.24914 1.114602
17 1.73219 1.113544 33 1.19967 1.113500
18 1.61260 1.116358 34 1.17261 1.113517
19 1. 50497 1.113524 35 1.15844 1.113539
20 1.40759 1.113651 50 1.11954 1.119539
21 1.31906 1.140008 100 1.11954 1.113490

Figure 9. Graphical presentation of Table 1 data.

Table 2 shows the calculation results and time of calculations for various objects. The same
objects were calculated using the algorithm of directed exhaustion with step being equal to the
accuracy of the basic data of water consumption (∆=0.01); the solutions of the problem of the
same order (not better) were obtained; however, the time for calculation took dozens of hours.
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Table 2.

Algorithm of narrowing neighborhoods (solution accuracy ε = 0.001)
The object W Counting

time
The object W Counting

time
F01.txt 1,1140 00m, 41sec F05.txt 0,0000 00m, 14sec
F02.txt 2,0710 00m, 24sec F06.txt 0,0000 00m, 42sec
F03.txt 1,8220 00m, 28sec F07.txt 0,0000 00m, 14sec
F04.txt 0,3370 00m, 42sec F08.txt 0,0030 00m, 22sec
F09.txt 1,0670 00m, 10sec F11.txt 0,0000 00m, 37sec

The software of algorithm using up – to – date tools of visual programming (Builder 6.0
C++) was developed by me. The numerical experiments were conducted based on computer
HP Compaq 6000 Pro MT PC Intel(R) Corel TM) Duo CPU E7500 @ 2.93Ghz, 1.58 GHz.
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