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ON THE RESTORATION PROBLEM WITH DEGENERATED DIFFUSION

MARAT I. TLEUBERGENOV1, GULMIRA T. IBRAEVA2

Abstract. The sufficient conditions are obtained on the restoration problems’ solvability in a

class of the stochastic differential Ito systems of the first order (with random disturbances from

a class of Wiener processes and the diffusion degenerated with regard to a part of variables) on

the given properties of a movement, when a control is included into the coefficient of drift, by

separation method. The aspect of driving parameters is defined, ensuring sufficient conditions

of the given integral manifold’s existence of constructed equations’ set in nonlinear and linear

cases.
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1. Introduction

The fundamentals of the theory and the common methods of inverse problems’ solving of
differential systems are developed in [1-3, etc.] for determined systems the equations of which
are ordinary differential equations (ODE). So, in Erugin’s article [1] the set of ODE which have
the given integral curve is constructed. This work, afterwards, has appeared establishing in
formation and development of the theory of inverse problems of systems’ dynamics, described
by ODE. The statement, classification of differential systems’ inverse problems of and their
solving in a class of ODE are stated in works [2,3].

In works [4-6] inverse problems of dynamics are considered at the additional supposition
about presence of random disturbances from class of Wiener processes and, in particular, by
the quasi-inversion method it is solved: 1) the basic inverse problem of dynamics - construction
of the set of stochastic differential Ito equations of second order, possessing the given integral
manyfold; 2) the problem of restoration of movement’s equations - construction of the set of
driving parameters which are going into in the given system of the stochastic differential Ito
equations of second order, by the given integral manyfold; and 3) the problem of equations’
closure of movement - construction of the set of second order’s closing stochastic differential Ito
equations by the given system of equations and the given integral manyfold.

In particular, the problem of stochastic differential equations’ construction of second order

ẍ = f(x, ẋ, t) + D(x, ẋ, t)u + σ(x, ẋ, t)ξ̇ (1)

by the given set

Λ(t) : λ(x, ẋ, t) = 0, where λ ∈ Rm, λ = λ(x, ẋ, t) ∈ C121
xẋt , (2)
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so that the set (2) would be an integral manifold of equations (1), is considered in [6]. The
system (1) can be interpreted as system of 2n equations of first order with diffusion degenerated
exactly on n variables.

In a general view the system of the differential equations with degenerated diffusion of an
aspect 




ẏ = f1(y, z, v, w, t), y ∈ Rl1 , z ∈ Rl2 , v ∈ Rp1 , w ∈ Rp2 ,

ż = f2(y, z, v, w, t) + σ1(y, z, v, w, t)ξ̇, ξ ∈ Rr,

v̇ = f3(y, z, v, w, t) + L1(y, z, v, w, t)u1, u1 ∈ Rk1 , u2 ∈ Rk2 ,

ẇ = f4(y, z, v, w, t) + L2(y, z, v, w, t)u2 + σ2(y, z, v, w, t)ξ̇,

(3)

by given integral manifold

Λ(t) : λ(y, z, v, w, t) = 0, where λ = λ(y, z, v, w, t) ∈ C12121
yzvwt, λ ∈ Rm. (4)

was constructed earlier by authors in [7] by quasi-inversion method.
Here C12121

yzvwt means the set of functions γ(y, z, v, w, t), which are continuously differentiable
on y, v and on t and doubly continuously differentiable on z, w; l1 + l2 + p1 + p2 = n; u1, u2 are
components of control vector-function u; L1, L2 are matrices of dimension accordingly (p1×k1),
(p2 × k2).

Though quasi-inversion method gives theoretically necessary and sufficient conditions of solv-
ability, i.e. the maximum wide set of the equations possessing given integral manifold is defined,
but necessary and sufficient conditions of solvability, received by a quasi-inversion method, are
no constructive, also their application in practice calls certain difficulties. Therefore develop-
ment and application of other methods of research, developed in a class of the ODE [3], and
obtaining of more constructive conditions of solvability in a class of the stochastic differential
equations is of interest.

In particular, in the given article the stochastic inverse problem of restoration is solved by a
separation method.

2. Stochastic problem with control on a drift

Let us give the system of the stochastic differential Ito equations of first order (3). It is required
to define the vector-functions u1(y, z, v, w, t) ∈ Rk1 and u2(y, z, v, w, t) ∈ Rk2 , k1 + k2 = r

entering into drift coefficient, by given integral manifold (4).
It is supposed, that f1, f2, f3, f4, σ1, σ2 belong to a class of functions K, which are continuous

on t and Lipschitzian on y, z, v and w in a neighborhood of the set Λ(t)

Uh(Λ) = {q = (yT , zT , vT , wT )T : ρ(q, Λ(t)) < h, h > 0}. (5)

The posed problem is full enough examined in [2,3] in case of lack of random disturbances
(σ1 ≡ σ2 ≡ 0) .

Let us make the equation of disturbed movement for the solving of posed problem in view
of build-up of a set of equations (3) by given integral manifold (4) by Ito rule of stochastic
differentiation of complicated function [8, p.204].

λ̇ =
∂λ

∂t
+

∂λ

∂y
f1 +

∂λ

∂z
f2 +

∂λ

∂v
f3 +

∂λ

∂w
f4 +

∂λ

∂v
L1u1 +

∂λ

∂w
L2u2 + S1 +S2 +

∂λ

∂z
σ1ξ̇ +

∂λ

∂w
σ2ξ̇, (6)

where S1 =
1
2

[
∂2λ

∂z∂z
σ1σ

T
1

]
, S2 =

1
2

[
∂2λ

∂w∂w
: σ2σ

T
2

]
, and under

[
∂2λ

∂z∂z
: D

]
, following [8], it is

understood the vector, the elements of which are the traces of matrices’ products of correspond-
ing elements’ second derivatives λµ(y, z, v, w, t), µ = 1,m of vector λ(y, z, v, w, t) on components
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z on a matrix D:

[
∂2λ

∂z∂z
: D

]
=




tr

(
∂2λ1

∂z∂z
D

)

...

tr

(
∂2λm

∂z∂z
D

)




.

And also it is introduced N.P. Erugin’s type [1] an m- measured vector-function A and an (m×r)-
matrix B, possessing property A(0; y, z, v, w, t) ≡ 0, B(0; y, z, v, w, t) ≡ 0, also an equality

λ̇ = A(λ; y, z, v, w, t) + B(λ; y, z, v, w, t)ξ̇ (7)

takes place.
Comparing the equations (6) and (7), we come to relations





∂λ

∂t
+

∂λ

∂y
f1 +

∂λ

∂z
f2 +

∂λ

∂v
f3 +

∂λ

∂w
f4 +

∂λ

∂v
L1u1 +

∂λ

∂w
L2u2 + S1 + S2 = A,

∂λ

∂z
σ1 +

∂λ

∂w
σ2 = B,

which we will rewrite as follows




∂λ

∂v
L1u1 + Du2 = A−

(
∂λ

∂t
+

∂λ

∂y
f1 +

∂λ

∂z
f2 +

∂λ

∂v
f3 +

∂λ

∂w
f4 + S1 + S2

)
,

∂λ

∂z
σ1 +

∂λ

∂w
σ2 = B,

(8)

where through D it is meant an (m× k2) matrix D =
∂λ

∂w
L2.

From the given relations it is necessary to discover u1, u2, σ1, σ2. For this purpose we use
a separation method [3, p.21] of required system. Following a separation method, beforehand

matrices D,
∂λ

∂w
, σ2 and a vector-function u2 we will present in an aspect:

D = (D′, D′′),
∂λ

∂w
= (G′, G′′), σ2 =

(
σ′2
σ′′2

)
, u2 =

(
u′2
u′′2

)
,

where D′ is a square matrix of dimensionality (m ×m), D′′ - (m × (k2 −m)) matrix, G′ is a
square matrix of dimensionality (m×m), G′′ - (m× (p2 −m)) matrix, σ′2 - (m× r) matrix,
σ′′2 - ((p2 −m)× r) matrix, u′2 - m-vector, u′′2 - (k2 −m)-vector.

Then the system (24) can be noted in an aspect:




∂λ

∂v
L1u1 + D′u′2 + D′′u′′2 = N,

∂λ

∂z
σ1 + G′σ′2 + G′′σ′′2 = B,

(9)

where N = A−
(

∂λ

∂t
+

∂λ

∂y
f1 +

∂λ

∂z
f2 +

∂λ

∂v
f3 +

∂λ

∂w
f4 + S1 + S2

)
.

Let us suppose, that det D′ 6= 0 and det G′ 6= 0, then a solution of system (9) is possible to
present in an aspect

u′2 = (D′)−1
(
N − ∂λ

∂v
L1u1 −D′′u′′2

)
, (10)

σ′2 = (G′)−1
(
B − ∂λ

∂z
σ1 −G′′σ′′2

)
. (11)

Hence, the theorem is valid.
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Theorem 2.1. The set (4) is integral manifold of system of differential equations (3) if the
following conditions are satisfied:
1) square submatrices D′, G′ of matrices D, G are non-degenerate det D′ 6= 0, det G′ 6= 0;
2) under arbitrarily given u1, u′′2 ∈ K the first m coordinates u′2 of vector u2 look like (10);
3) under arbitrarily given σ1, σ′′2 ∈ K a submatrix σ′2 of matrix σ2 looks like (11).

3. The linear case of a stochastic problem with control on a drift

It is required on given linear on a drift stochastic differential Ito equation of the first order




ẏ = D1(t)y + D2(t)z + D3(t)v + D4(t)w + d(t),

ż = C1(t)y + C2(t)z + C3(t)v + C4(t)w + c(t) + σ1(t)ξ̇,

v̇ = F1(t)y + F2(t)z + F3(t)v + F4(t)w + F5(t)u1 + f(t),

ẇ = G1(t)y + G2(t)z + G3(t)v + G4(t)w + G5(t)u2 + g(t) + σ2(t)ξ̇

(12)

to define control’s vector-functions

u1 = u(y, z, v, w, t) and u2 = u(y, z, v, w, t) ∈ Rr

on the given linear integral manifold

Λ(t) : λ ≡ H1(t)y + H2(t)z + H3(t)v + H4(t)w + h(t) = 0. (13)

The equation of a disturbed motion (6) in a considered problem looks like

λ̇ = E1(t)y + E2(t)z + E3(t)v + E4(t)w + E5(t) + H3(t)F5(t)u1 + H4(t)G5(t)u2+

+H2(t)σ1ξ̇ + H4(t)σ2ξ̇, (14)

where
E1(t) = H1(t)D1(t) + H2(t)C1(t) + H3(t)F1(t) + H4(t)G1(t) + Ḣ1(t),

E2(t) = H1(t)D2(t) + H2(t)C2(t) + H3(t)F2(t) + H4(t)G2(t) + Ḣ2(t),

E3(t) = H1(t)D3(t) + H2(t)C3(t) + H3(t)F3(t) + H4(t)G4(t) + Ḣ3(t),

E4(t) = H1(t)D4(t) + H2(t)C4(t) + H3(t)F4(t) + H4(t)G4(t) + Ḣ4(t),

E5(t) = H1(t)d(t) + H2(t)c(t) + H3(t)f(t) + H4(t)g(t) + ḣ(t).

And, on the other hand, by means of any Erugin vector-function A = A1(t)λ and a matrix-
function B1 with the property B1(0, y, z, v, w, t) ≡ 0 we have

λ̇ = A1(t)λ + B1(λ, y, z, v, w, t)ξ̇. (15)

The next equalities



H3(t)F5(t)u1 + H4(t)G5(t)u2 = (A1H1 − E1) y + (A1H2 −E2) z+

+ (A1H3 − E3) v + (A1H4 −E4) w + (A1h(t)− E5) ,

H2σ1 + H4σ2 = B1

(16)

follow from relations (14) and (15).
We will apply the separation method [3, p.21] for solving posed problem. Beforehand we will

introduce the labels M(t) = H4G5, Ñ(t) = (A1H1 − E1) y + (A1H2 −E2) z + (A1H3 − E3) v +
+ (A1H4 − E4) w + (A1h(t)− E5) and, further, we will present the system (16) in an aspect
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



M ′u′2 = Ñ −H3(t)F5(t)u1 −M ′′u′′2,

H ′
4σ
′
2 = B1 −H2σ1 −H ′′

4 σ′′2 .
(17)

where the matrices M, H4, σ2 and the vector-function u2(t) are divided into corresponding
submatrices and corresponding vectors:

M = (M ′, M ′′), H4 = (H ′
4,H

′′
4 ), σ2 = (σ′2, σ

′′
2), u2 =

(
u′2
u′′2

)
,

where M ′ is a matrix has the dimensionality (m × m), M ′′−(m × (k2 − m)), H ′
4−(m × m),

H ′′
4−(m × (p2 − m)); σ′2−(m × r), σ′′2− ((p2 − m) × r); u′2 is an m-vector function, u′′2 is an

(r2 −m)-vector-function.
Let us suppose, that det M ′ 6= 0 and det H ′

4 6= 0, then the relations

u′2 =
(
M ′)−1(

Ñ(t)−H3(t)F5(t)u1 −M ′′u′′2
)
, (18)

σ′2 =
(
H ′

4

)−1(
B1 −H2σ1 −H ′′

4 σ′′2
)
, (19)

follow from (17).
Hence, the following statement takes place:

Theorem 3.1. The linear set (13) is integral manifold of differential equations’ system linear
on a drift (12) if the following conditions are satisfied:
1) square submatrices M ′ and H4 of the rectangular matrices M = H4G5 and H4 possess
property detM ′ 6= 0, detH4 6= 0;
2) at arbitrarily given u1, u′2 ∈ K the first m coordinates u′2 of the vector u2 look like (18);
3) at arbitrarily given σ1, σ′′2 ∈ K the submatrix σ′2 of matrix σ2 looks like (19).

4. Scalar case of the restoration problem

Let the system from four scalar stochastic differential Ito equations of first order is given



ẋ1 = g1(x1, x2, x3, x4, t), x = (x1, x2, x3, x4)T ∈ R4,

ẋ2 = g2(x1, x2, x3, x4, t) + γ1(x1, x2, x3, x4, t)ζ̇, ζinR1,

ẋ3 = g3(x1, x2, x3, x4, t) + v1(x1, x2, x3, x4, t)u1, u1 ∈ R1, u2 ∈ R1,

ẋ4 = g4(x1, x2, x3, x4, t) + v2(x1, x2, x3, x4, t)u2 + γ2(x1, x2, x3, x4, t)ζ̇.

(20)

It is required to define the scalar functions u1(x1, x2, x3, x4, t) and u2(x1, x2, x3, x4, t), entering
into a drift coefficient, by given integral manifold

H(t) : η(x1, x2, x3, x4, t) = 0, where η = η(x1, x2, x3, x4, t) ∈ C1 2 1 2 1
x1x2x3x4 t , η ∈ R1. (21)

In other words, on given g1, g2, g3, g4, γ1, γ2 and η we will define control parameters u1 and
u2 so, that the set (21) would be an integral manifold of the equation (20).

The disturbed movement’s equation in a considered problem owing to a rule of Ito stochastic
differentiation looks like

η̇ =
∂η

∂t
+

∂η

∂x1
f1 +

∂η

∂x2
g2 +

∂η

∂x3
g3 +

∂η

∂x4
f4 +

∂η

∂x3
v1u1+

+
∂η

∂x4
v2u2 +

1
2

∂2η

∂x2
2

γ2
1 +

1
2

∂2η

∂x2
4

γ2
2 +

∂η

∂x2
γ1ζ̇ +

∂η

∂x4
γ2ζ̇. (22)

And also it is introduced N.P.Erugin type’s [1] scalar functions a and b, possessing property
a(0;x1, x2, x3, x4, t) ≡ b(0;x1, x2, x3, x4, t) ≡ 0, also an equality

η̇ = a(η;x1, x2, x3, x4, t) + b(η;x1, x2, x3, x4, t)ζ̇ (23)
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takes place.
Comparing the equations (22) and (23), we come to relations





∂η

∂t
+

∂η

∂x1
g1 +

∂η

∂x2
g2 +

∂η

∂x3
g3 +

∂η

∂x4
g4 +

∂η

∂x3
v1u1 +

∂η

∂x4
v2u2 +

1
2

∂2η

∂x2
2

γ2
1 +

1
2

∂2η

∂x2
4

γ2
2 = a,

∂η

∂x2
γ1 +

∂η

∂x4
γ2 = b,

which we will rewrite as follows 



∂η

∂x3
v1u1 +

∂η

∂x4
v2u2 = M,

∂η

∂x2
γ1 +

∂η

∂x4
γ2 = b,

(24)

where M = a−
(

∂η

∂t
+

∂η

∂x1
f1 +

∂η

∂x2
g2 +

∂η

∂x3
g3 +

∂η

∂x4
g4 + S1 + S2

)
.

Let us suppose, that ∂η
∂x4

6= 0 and v2 6= 0, then a solution of system (24) is possible to present
in an aspect

u2 = (
∂η

∂x4
v2)−1

(
M − ∂η

∂v
v1u1

)
, (25)

γ2 = (
∂η

∂x4
)−1

(
b− ∂η

∂x2
γ1

)
. (26)

Hence, the theorem is valid.

Theorem 4.1. The set (21) is integral manifold of system of differential equations (20) if the

following conditions are satisfied: 1)
∂η

∂x4
6= 0, v2 6= 0; 2) under arbitrarily given u1 ∈ K a

function u2 looks like (25); 3) under arbitrarily given γ1 ∈ K a function γ2 looks like (26).

5. Conclusion

Thus, in general non-linear, general linear and scalar non-linear statements of stochastic
restoration’s problems with degenerated concerning a part of variables diffusion are solved by a
separation method.
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