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ON eBE-ALGEBRAS

A. REZAEI1, A. BORUMAND SAEID2, A. RADFAR1

Abstract. In this paper, we introduce a new algebra, called an eBE-algebra, which is a gen-

eralization of a BE-algebra and discuss its basic properties. Also, the notion of filters in this

structure is studied. We show that every filter can state as a union of extension of upper sets.
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1. Introduction and preliminaries

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-

algebras ([2]). They have shown that the class of BCK-algebras is a proper subclass of the class

of BCI-algebras. It is known that several generalizations of a BCI/BCK-algebra were extensively

investigated by many researchers and properties have been considered systematically. H. S. Kim

and Y. H. Kim introduced the notion of a BE-algebra as a generalization of a dual BCK-algebra

([3]). They defined BE-algebra as an algebra (X; ∗, 1) of type (2, 0) (i.e. a non-empty set with

a binary operation “∗” and a constant 1) satisfying the following axioms:

(BE1) x ∗ x = 1,

(BE2) x ∗ 1 = 1,

(BE3) 1 ∗ x = x,

(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z),
for all x, y, z ∈ X.

A. Walendziak investigated the relationship between BE-algebras, implication algebras, and

J-algebras ([7]). A. Rezaei et al. got some results on BE-algebras and introduced the notion of

commutative ideals in BE-algebras and proved several characterizations of such ideals ([4, 5, 6]).

For development of many-valued logical system, it is needed to make clear the corresponding

algebraic structures. It is motivated us to focus on a new algebraic structure, namely eBE-

algebra, as a generalization of BE-algebra and so investigate some properties. Also, we discuss

on filters of eBE-algebras.

2. A New extension of BE-algebras

Definition 2.1. Let X be a non-empty set. By an eBE-algebra we shall mean an algebra

(X; ∗, A) such that “∗” is a binary operation on X and A is a non-empty subset of X satisfying

the following axioms:

• (eBE1) x ∗ x ∈ A,
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• (eBE2) x ∗A ⊆ A,

• (eBE3) A ∗ x = {x},
• (eBE4) x ∗ (y ∗ z) = y ∗ (x ∗ z),

for all x, y, z ∈ X.

In Text, A ∗ x = {a ∗ x : a ∈ A} and similarly x ∗A = {x ∗ a : a ∈ A}.

We note that if A = X, then (X; ∗, X) is an eBE-algebra.

Let a, b ∈ A. By (eBE3), we have a ∗ b = b ∈ A and b ∗ a = a ∈ A. Hence A is a closed subset

of X.

We introduce a relation “≤” on X by x ≤ y if and only if x ∗ y ∈ A. By (eBE1) the relation

“≤” is reflexive.

Theorem 2.1. Every BE-algebra is an eBE-algebra.

Proof. Put A := {1}, we can see that (X; ∗, A) is an eBE-algebra. �

In the next example we show that every eBE-algebra is not a BE-algebra in general.

Example 2.1. Let X = {a, b, c} be a set and A = {a, b} with the following table.

∗1 a b c

a a b c

b a b c

c b b a

Then (X; ∗1, A) is an eBE-algebra. Since b∗1 b = b and c∗1 c = a, there is not an element 1 ∈ X,

such that x ∗1 x = 1, for all x ∈ X. Hence (X; ∗1, A) is not a BE-algebra.

In the following example we show that axioms “(eBE1)” to “(eBE4)” are independence.

Example 2.2. Let X = {a, b, c} be a set and A = {a, b} with the following tables:

(i).

∗2 a b c

a a b c

b a b c

c a a c

Then (X; ∗2, A) satisfies axioms (eBE2), (eBE3) and (eBE4). Since c ∗2 c = c ̸∈ A, (X; ∗2, A)

does not satisfy the axiom (eBE1).

(ii).

∗3 a b c

a a b c

b a b c

c c c b

Then (X; ∗3, A) satisfies axioms (eBE1), (eBE3) and (eBE4). Since c∗3A = c∗3{a, b} = {c} ̸⊆ A,

(X; ∗3, A) does not satisfy the axiom (eBE2).

(iii).

∗4 a b c

a b b b

b c b c

c b b b

Then (X; ∗4, A) satisfies axioms (eBE1), (eBE2) and (eBE4). Since A ∗4 a = {a, b} ∗4 a =

{b, c} ̸= {a}, (X; ∗4, A) does not satisfy the axiom (eBE3).



202 TWMS J. PURE APPL. MATH., V.7, N.2, 2016

(iv).

∗5 a b c d

a a b c d

b a b c d

c b b b c

d b b c b

Then (X; ∗5, A) satisfies axioms (eBE1), (eBE2) and (eBE3). Since

c ∗5 (d ∗5 d) = c ∗5 b = b ̸= c = d ∗5 c = d ∗5 (c ∗5 d),

(X; ∗5, A) does not satisfy the axiom (eBE4).

Theorem 2.2. Let (X; ∗, A) be an eBE-algebra. If A is a singleton set, then (X; ∗, A) is a

BE-algebra.

Proof. Let A = {a} be a singleton set. If we put 1 := a, then (X; ∗, 1) is a BE-algebra. �

Theorem 2.3. Let (X; ∗, A1) and (X; ∗, A2) be two eBE-algebras. Then (X, ∗, A1 ∩A2) is, too.

Proof. Let x ∈ X. Since x ∗ x ∈ A1 and x ∗ x ∈ A2, we have x ∗ x ∈ A1 ∩ A2 and so (eBE1) is

valid.

For (eBE2), let a ∈ x ∗ (A1 ∩ A2). Hence there exists b ∈ A1 ∩ A2 such that a = x ∗ b. Since

b ∈ A1, x∗b ∈ A1 and b ∈ A2, x∗b ∈ A2, we have a = x∗b ∈ A1∩A2 and so x∗(A1∩A2) ⊆ A1∩A2.

Let a ∈ (A1 ∩ A2) ∗ x. Then there exists b ∈ A1 ∩A2 such that a = b ∗ x. Since b ∗ x = x, we

can see that a = x and so (A1 ∩A2) ∗ x = {x}. Therefore (eBE3) is valid.

Also, it is obvious that (eBE4) is valid. �

Corollary 2.1. If (X; ∗, Ai), for i ∈ Λ, be a family of eBE-algebras, then (X; ∗,
∩
i∈Λ

Ai) is, too.

Theorem 2.4. Let (X; ∗, A1) and (X; ∗, A2) be two eBE-algebras. Then (X, ∗, A1 ∪A2) is, too.

Proof. Let x ∈ X. Since x ∗ x ∈ A1 and x ∗ x ∈ A2, we have x ∗ x ∈ A1 ∪ A2 and so (eBE1) is

valid.

For (eBE2), let a ∈ x∗(A1∪A2). Hence there exists b ∈ A1∪A2 such that a = x∗b. If b ∈ A1,

then a ∈ A1. Also, if b ∈ A2, then a ∈ A2. Thus a ∈ A1 ∪A2 and so x ∗ (A1 ∪A2) ⊆ A1 ∪A2.

Let a ∈ (A1 ∪ A2) ∗ x. Then there exists b ∈ A1 ∪A2 such that a = b ∗ x. Since b ∗ x = x, we

can see that a = x and so (A1 ∪A2) ∗ x = {x}. Therefore (eBE3) is valid.

Also, it is obvious that (eBE4) is valid. �

Corollary 2.2. If (X; ∗, Ai), for i ∈ Λ, is a family of eBE-algebras, then (X; ∗,
∪
i∈Λ

Ai) is, too.

Proposition 2.1. Let (X; ∗, A) be an eBE-algebra. Then

(i) (X; ∗, X \A) is not an eBE-algebra,

(ii) x ∗ (y ∗ x) ∈ A,

(iii) x ≤ y ∗ z implies y ≤ x ∗ z,
(iv) x ≤ (x ∗ y) ∗ x,
(v) y ∗ z ∈ A implies x ∗ (y ∗ z) ∈ A and y ∗ (x ∗ z) ∈ A,

(vi) x ∗ (y ∗ z) ̸∈ A implies x ∗ z ̸∈ A,

for all x, y, z ∈ X.
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Proof. (i). Since x ∗A ⊆ A, we have x ∗A ̸⊆ X \A and so (eBE2) is not valid.

(ii). Using (eBE4) and (eBE2), we have

x ∗ (y ∗ x) = y ∗ (x ∗ x) ∈ y ∗A ⊆ A.

(iii). Let x ≤ y ∗ z. Hence x ∗ (y ∗ z) ∈ A. Then by using (eBE4), we have

y ∗ (x ∗ z) = x ∗ (y ∗ z) ∈ A.

Therefore y ≤ x ∗ z.
(iv). From (eBE4), (eBE1) and (eBE3) we have

x ∗ ((x ∗ y) ∗ x) = (x ∗ y) ∗ (x ∗ x) ∈ (x ∗ y) ∗A ⊆ A.

Therefore x ≤ (x ∗ y) ∗ x.
(v). Let y ∗ z ∈ A. Hence x ∗ (y ∗ z) ∈ x ∗A ⊆ A. Now, using (eBE4) we have y ∗ (x ∗ z) ∈ A.

(vi). The proof is obvious by (v).

�

Theorem 2.5. Let (X; ∗, A) be an eBE-algebra. Consider Y := (X \ A) ∪ {1} and define the

operation ⋄ on Y as follows:

x ⋄ y =


x ∗ y if x, y ̸= 1 and x ∗ y /∈ A

1 if x, y ̸= 1 and x ∗ y ∈ A

y if x = 1

1 if y = 1

Then (Y ; ⋄, 1) is a BE-algebra.

Proof. By (eBE1), x ∗ x ∈ A, for all x ∈ X. Thus x ⋄ x = 1, for all x ∈ Y and so (BE1) holds.

By definition of “⋄”, (BE2) and (BE3) are hold. To prove (Y ; ⋄, 1) is a BE-algebra it is

sufficient to prove that x ⋄ (y ⋄ z) = y ⋄ (x ⋄ z), for all x, y, z ∈ Y . If x = 1 or y = 1 or z = 1,

then we have x ⋄ (y ⋄ z) = y ⋄ (x ⋄ z). Now, let x, y, z ̸= 1.

If y ∗ z ∈ A, then y ⋄ z = 1 and so x ⋄ (y ⋄ z) = 1. On the other hand, if x ∗ z ∈ A, then

x ⋄ z = 1 and y ⋄ (x ⋄ z) = y ⋄ 1 = 1 = x ⋄ (y ⋄ z). If x ∗ z /∈ A, then x ⋄ z = x ∗ z. By Proposition

2.1(v), and y ∗ z ∈ A, we have y ∗ (x ∗ z) ∈ A. Hence y ⋄ (x ⋄ z) = 1 = x ⋄ (y ⋄ z).
If y ∗ z /∈ A, then y ⋄ z = y ∗ z. We have two cases: x ∗ (y ∗ z) ∈ A or x ∗ (y ∗ z) ̸∈ A.

If x ∗ (y ⋄ z) = x ∗ (y ∗ z) ∈ A, then x ⋄ (y ⋄ z) = 1. By (eBE4), y ∗ (x ∗ z) ∈ A and so

y ⋄ (x ⋄ z) = y ⋄ (x ∗ z) = 1 or y ⋄ (x ⋄ z) = y ⋄ 1 = 1. Thus x ⋄ (y ⋄ z) = y ⋄ (x ⋄ z), in this case.

If x ∗ (y ∗ z) ̸∈ A, then x ⋄ (y ⋄ z) = x ∗ (y ∗ z). By Proposition 2.1(vi), x ∗ z ̸∈ A and so

x ⋄ z = x ∗ z. Also, by (eBE4), y ∗ (x ∗ z) = x ∗ (y ∗ z) ̸∈ A. Hence

y ⋄ (x ⋄ z) = y ⋄ (x ∗ z) = y ∗ (x ∗ z) = x ∗ (y ∗ z) = x ⋄ (y ⋄ z).

Thus x ⋄ (y ⋄ z) = y ⋄ (x ⋄ z). Therefore (Y ; ⋄, 1) is a BE-algebra. �

Example 2.3. Let X = {a, b, c, d} and A = {a, b}. Consider the following table:

∗6 a b c d

a a b c d

b a b c d

c a a a d

d a a a a
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Then (X; ∗6, A) is an eBE-algebra. By Theorem 2.5, we get Y = {1, c, d} with the following

table:

⋄ 1 c d

1 1 c d

c 1 1 d

d 1 1 1

Where (Y ; ⋄, 1) is a BE-algebra.

Theorem 2.6. Let (X; ∗, 1) be a BE-algebra and A0 be a set such that A0∩X = ∅. If we define

Y = X ∪A0, A = A0 ∪ {1} and define the operation “◦” on Y as follows:

x ◦ y =

{
x ∗ y if x, y /∈ A0

y otherwise

Then (Y ; ◦, A) is an eBE-algebra.

Proof. Let x ∈ Y . If x ∈ X, then x ◦ x = x ∗ x = 1 ∈ A. If x ∈ A0, then x ◦ x = x ∈ A0 ⊆ A.

Thus x ◦ x ∈ A, for all x ∈ Y and (eBE1) holds.

By definition of “◦”, we have x ◦ A = A ⊆ A and A ◦ x = {x}. Hence (eBE2) and (eBE3)

holds.

To prove Y satisfies axiom (eBE4) we must investigate eight cases. By easy calculation we

get if x, y, z ̸∈ A0, then

x ◦ (y ◦ z) = x ∗ (y ∗ z) = y ∗ (x ∗ z) = y ◦ (x ◦ z).

On the seven rest following cases, x ◦ (y ◦ z) = z = y ◦ (x ◦ z). Therefore (Y ; ◦, A) is an

eBE-algebra. �

Definition 2.2. An eBE-algebra X is said to be self distributive if x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z),
for all x, y, z ∈ X.

Example 2.4. (i). According Example 2.3, (X; ∗6, A) is a self distributive eBE-algebra.

(ii). In Example 2.1, since

c ∗1 (c ∗1 c) = c ∗1 a = b ̸= a = a ∗1 a = (c ∗1 c) ∗1 (c ∗1 c).

Then (X; ∗1, A) is not a self distributive eBE-algebra.

Proposition 2.2. Let (X; ∗, A) be a self distributive eBE-algebra. Then

(i) if x ∗ y ∈ A, then z ∗ x ≤ z ∗ y,
(ii) y ∗ z ≤ (x ∗ y) ∗ (x ∗ z),

for all x, y, z ∈ X.

Proof. (i). Let x ∗ y ∈ A and z ∈ X. Since X is a self distributive, we have

(z ∗ x) ∗ (z ∗ y) = z ∗ (x ∗ y) ∈ z ∗A ⊆ A.

Therefore z ∗ x ≤ z ∗ y.
(ii). Using self distributivity and Proposition 2.1(ii), we have

(y ∗ z) ∗ ((x ∗ y) ∗ (x ∗ z)) = (y ∗ z) ∗ (x ∗ (y ∗ z)) ∈ A.

Therefore y ∗ z ≤ (x ∗ y) ∗ (x ∗ z). �
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3. Filters on eBE-algebras

From now on, X is an eBE-algebra, otherwise it is stated.

Definition 3.1. A subset F of X is called a filter of X if it satisfies:

(F1) A ⊆ F ;

(F2) x ∈ F and x ∗ y ∈ F imply y ∈ F .

We will denote by F (X) the set of all filters in X. We have F (X) ̸= ∅, because X and A are

filters of X.

Example 3.1. In Example 2.4(ii), F = {a, b, c} is a filter of X.

Proposition 3.1. Let F ∈ F (X). If x ∈ F and x ≤ y, then y ∈ F .

Proof. Let x ∈ F and x ≤ y. Then x ∗ y ∈ A ⊆ F . Hence x ∗ y ∈ F . Since x ∈ F and F is a

filter, we have y ∈ F. �

Theorem 3.1. Let (X; ∗, A) be an eBE-algebra. Then A is a filter of X.

Proof. Since A ⊆ A, it is sufficient to show (F2). Let x, x ∗ y ∈ A. Since for all y ∈ X,

{y} = A ∗ y, we have y = x ∗ y ∈ A. Therefore A is a filter of X. �

Proposition 3.2. Let {Fα : α ∈ Λ} be a family of filters. Then
∩
α∈Λ

Fα, is too.

Proof. Since, A ⊆ Fα, for all α ∈ Λ, we have A ⊆
∩
α∈Λ

Fα. Let x, x ∗ y ∈
∩
α∈Λ

Fα. Then

x, x ∗ y ∈ Fα, for all α ∈ Λ. Since Fα is a filter, we have y ∈ Fα, for all α ∈ Λ. Therefore

y ∈
∩
α∈Λ

Fα. �

Theorem 3.2. Let (X; ∗, A) be an eBE-algebra and F be a filter. Then F1 = (F \ A) ∪ {1} is

a filter of (Y ; ⋄, 1), which is defined in Theorem 2.5.

Proof. It is obvious that 1 ∈ F1. Let x ∈ F1 and x ⋄ y ∈ F1. If x = 1, then y = 1 ⋄ y ∈ F1.

Now let x ̸= 1. If y = 1, then y = 1 ∈ F1. Now let x, y ̸= 1. So x ∈ F \ A and y ∈ X \ A. If

x ⋄ y = 1 by definition of “⋄” we imply that x ∗ y ∈ A. By definition of filter x ∗ y ∈ A ⊆ F and

x ∈ F , we imply that y ∈ F . Beside y /∈ A, y ∈ F \A ⊆ F1.

If x ⋄ y ̸= 1, then by definition of “⋄”, x ∗ y ̸∈ A and x ⋄ y = x ∗ y ∈ F1. Thus x ∗ y ∈ F1 ⊆ F .

Beside F is a filter and x ∈ F we get y ∈ F . Since y /∈ A, y ∈ F \ A ⊆ F1. Therefore F1 is a

filter of Y . �

Example 3.2. From Theorem 2.5 and Example 2.4 (i), we get Y = {1, c, d} with the following

table:
⋄ 1 c d

1 1 c d

c 1 1 d

d 1 1 1

which is a BE-algebra. We can see that F = {a, b, c} is a filter of (X; ∗6, A) and F1 = (F \A)∪
{1} = {1, c} is a filter of (Y ; ⋄, 1).

Theorem 3.3. Let (X; ∗, 1) be a BE-algebra, F be a filter of X and A0 be a set such that

X ∩ A0 = ∅. Then F0 = F ∪ A0 is a filter of an eBE-algebra (Y ; ◦, A), which is defined in

Theorem 2.6.
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Proof. Since F is a filter, 1 ∈ F , and so A ⊆ F0. Now, let x ∈ F0 and x ◦ y ∈ F0. If x ◦ y ∈ A0,

then by definition of “◦”, x ◦ y = y and so y ∈ A0 ⊆ F0.

If x◦y ∈ F , by definition of “◦”, we have x, y /∈ A and x◦y = x∗y. Besides x ∈ F0 = F ∪A0,

consequently x ∈ F . Since F is a filter, x ∈ F and x ∗ y ∈ F , we get that y ∈ F ⊆ F0. Hence

F0 is a filter. �

Example 3.3. Let X = {1, c, d} and A0 = {a, b}. According to Example 3.2, (X; ⋄, 1) is a BE-

algebra. We can see that F = {1, c} is a filter of X. By Theorem 3.3, we get Y = {1, a, b, c, d},
A = {1, a, b} and (Y ; ◦, A) is an eBE-algebra with the following table:

◦ 1 a b c d

1 1 a b c d

a 1 a b c d

b 1 a b c d

c 1 a b 1 d

d 1 a b 1 1

We can see that F0 = F ∪A0 = {1, a, b, c} is a filter of Y .

Let (X; ∗, A) be an eBE-algebra and a ∈ X. Put Fa := {x ∈ X : a ∗ x ∈ A}. Since a ∗ a ∈ A

and a ∗A ⊆ A, we have a ∈ Fa and A ⊆ Fa. Hence Fa is not an empty set.

Also, if put F a := {x ∈ X : x ∗ a ∈ A}, then a ∈ F a but A ̸⊆ F a in general.

Example 3.4. In Example 2.4(i), F c = {c, d}, but A ̸⊆ F c.

Theorem 3.4. Let (X; ∗, A) be a self distributive eBE-algebra and a ∈ X. Then Fa ∈ F (X).

Proof. Let x, x ∗ y ∈ Fa. Then a ∗ x ∈ A and a ∗ (x ∗ y) ∈ A. Since X is self distributive, we

have (a ∗ x) ∗ (a ∗ y) ∈ A. Now, using Theorem 3.1, we have a ∗ y ∈ A. Therefore y ∈ Fa. �

In the next example we show that in the Theorem 3.4, if X is not self distributive, then Fa

is not a filter.

Example 3.5. Let X = {a, b, c, d} and A = {a, b}. Consider the following table:

∗7 a b c d

a a b c d

b a b c d

c b b b c

d b b b b

Then (X; ∗7, A) is an eBE-algebra which is not self distributive. We can see that Fc = {a, b, c}.
Because c ∈ Fc and c ∗7 d ∈ Fc but d /∈ Fc, Fc is not a filter.

Definition 3.2. For every x, y ∈ X define the set

eA(x, y) = {z ∈ X : x ∗ (y ∗ z) ∈ A}.

We call eA(x, y) an extension upper set of x, y. It is easy to see that A ⊆ eA(x, y), x, y ∈ eA(x, y)

and eA(x, y) = eA(y, x).

Example 3.6. In Example 3.5, eA(c, d) = X and eA(a, c) = {a, b, c}. Since a ∗ (c ∗ d) = a ∗ c =
c ̸∈ A, we conclude that d ̸∈ eA(a, c).

Proposition 3.3. Let (X; ∗, A) be an eBE-algebra and x ∈ X. Then

(i) Fx ⊆ eA(x, y), for all y ∈ X.
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(ii) If x ≤ y, then y ∈ eA(z, x), for all z ∈ X.

(iii) If y ∈ A, then eA(x, y) ⊆ Fx, for all x ∈ X.

Proof. (i). Let z ∈ Fx and y ∈ X. Then x ∗ z ∈ A. Using (eBE4) and (eBE2) we have

x ∗ (y ∗ z) = y ∗ (x ∗ z) ∈ y ∗A ⊆ A.

Thus x ∗ (y ∗ z) ∈ A and so z ∈ eA(x, y). Therefore Fx ⊆ eA(x, y).

(ii). Let x ≤ y and z ∈ X. Hence x ∗ y ∈ A. Using (eBE2) we have

z ∗ (x ∗ y) ∈ z ∗A ⊆ A.

Therefore y ∈ eA(z, x).

(iii). Let x ∈ X, y ∈ A and z ∈ eA(x, y). Using (eBE3) we have

x ∗ z = x ∗ (y ∗ z) ∈ A.

Thus z ∈ Fx. Therefore eA(x, y) ⊆ Fx. �

Corollary 3.1. If y ∈ A, then eA(x, y) = Fx.

Theorem 3.5. Let (X; ∗, A) be an eBE-algebra and x ∈ X. Then

Fx =
∩
y∈X

eA(x, y).

Proof. From Proposition 3.3(i), we have Fx ⊆
∩
y∈X

eA(x, y).

Now, let z ∈
∩
y∈X

eA(x, y). Then x ∗ (y ∗ z) ∈ A, for all y ∈ X. Since ∅ ̸= A ⊆ X, then

there exists a ∈ A and by (eBE3) we have x ∗ z = x ∗ (a ∗ z) ∈ A. Hence z ∈ Fx. Therefore

Fx =
∩
y∈X

eA(x, y). �

Theorem 3.6. Let (X; ∗, A) be a self distributive eBE-algebra. Then the extension upper set

eA(x, y) is a filter of X, where x, y ∈ X.

Proof. Let a∗b ∈ eA(x, y) and a ∈ eA(x, y). Then x∗(y∗(a∗b)) ∈ A and x∗(y∗a) ∈ A. It follows

from the self distributivity law that x∗ ((y ∗a)∗ (y ∗ b)) ∈ A and so (x∗ (y ∗a))∗ (x∗ (y ∗ b)) ∈ A.

Now, by Theorem 3.1, since A is a filter and x ∗ (y ∗ a) ∈ A, we have x ∗ (y ∗ b) ∈ A. Therefore

b ∈ eA(x, y). �

In the following theorem, we give an equivalent condition for the filter in eBE-algebras.

Theorem 3.7. Let F be a non-empty subset of an eBE-algebra X. Then F is a filter of X if

and only if eA(x, y) ⊆ F , for all x, y ∈ F.

Proof. Let F be a filter and x, y ∈ F . If z ∈ eA(x, y), then x ∗ (y ∗ z) ∈ A ⊆ F . Since x, y ∈ F

and F is a filter, we have z ∈ F . Hence eA(x, y) ⊆ F .

Conversely, suppose that eA(x, y) ⊆ F , for all x, y ∈ F . Since A ⊆ eA(x, y) ⊆ F , we have

A ⊆ F . Let a ∗ b, a ∈ F . Using (eBE1) we have (a ∗ b) ∗ (a ∗ b) ∈ A and so b ∈ eA(a ∗ b, a) ⊆ F .

Therefore b ∈ F . �

Theorem 3.8. If F is a filter of X, then

F =
∪

x,y∈F
eA(x, y).
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Proof. Let F be a filter of X and z ∈ F . Since z ∗(a∗z) ∈ A, for all a ∈ A, we have z ∈ eA(z, a).

Hence

F ⊆
∪

z∈F,a∈A
eA(z, a) ⊆

∪
x,y∈F

eA(x, y), [A ⊆ F ]

If z ∈
∪

x,y∈F
eA(x, y), then there exists a, b ∈ F such that z ∈ eA(a, b). It follows from Theorem

3.7, that z ∈ F , i.e.
∪

x,y∈F
eA(x, y) ⊆ F . Therefore F =

∪
x,y∈F

eA(x, y). �

For a non-empty subset I of X we define the binary relation ∼I in the following way:

x ∼I y if and only if x ∗ y ∈ I and y ∗ x ∈ I.

The set {b : a ∼I b} will be denoted by [a]I .

Lemma 3.1. In the above relation ∼I , if A ⊆ I and a ∈ A, then [a]I = I.

Proof. Let x ∈ I and a ∈ A. By using (eBE3) we have a ∗ x ∈ A ∗ x = {x} ⊆ I and so a ∗ x ∈ I.

On the other hand from (eBE2) we have x ∗ a ∈ x ∗ A ⊆ A ⊆ I, then x ∗ a ∈ I. Hence a ∼I x.

Therefore I ⊆ [a]I .

Conversely, let a ∈ A and x ∈ [a]I . Then x ∼I a and so x ∗ a ∈ I and a ∗ x = x ∈ I. Hence

[a]I ⊆ I. Therefore [a]I = I. �

Theorem 3.9. Let (X; ∗, A) be a self distributive eBE-algebra and F ∈ F (X). Then ∼F is a

congruence relation on X.

Proof. Since x ∗ x ∈ A ⊆ F , we have x ∗ x ∈ F and so x ∼F x.

If x ∼F y, then by definition of ∼F , it is obvious that y ∼F x.

Now, let x ∼F y and y ∼F z. Then x ∗ y, y ∗ x ∈ F and y ∗ z, z ∗ y ∈ F . By Proposition

2.2(ii), we have y ∗ z ≤ (x ∗ y) ∗ (x ∗ z) and so by Proposition 3.1, we have (x ∗ y) ∗ (x ∗ z) ∈ F .

Since F is a filter and x ∗ y ∈ F , we can see that x ∗ z ∈ F . By a similar way z ∗ x ∈ F . Thus

x ∼F z. Therefore ∼I is an equivalent relation on X.

If x ∼I y and u ∼I v, then x ∗ y, y ∗ x ∈ F and u ∗ v, v ∗ u ∈ F . By Proposition 2.2(ii), we

have u ∗ v ≤ (x ∗ u) ∗ (x ∗ v) and v ∗ u ≤ (x ∗ v) ∗ (x ∗ u) and so by Proposition 3.1, we have

(x ∗ u) ∗ (x ∗ v) ∈ F and (x ∗ v) ∗ (x ∗ u) ∈ F . Thus x ∗ u ∼F x ∗ v. By the same argument one

can prove that x ∗ v ∼F y ∗ v. Since the relation ∼I is transitive, we have x ∗ u ∼F y ∗ v which

prove that the relation ∼I is a congruence relation on X. �

Proposition 3.4. Let ∼I be a congruence relation on X, A ⊆ I and a ∈ A. Then [a]I is a

filter of X.

Proof. From Lemma 3.1, we have [a]I = I. Let x, x∗y ∈ [a]I . Thus x ∼I a and x∗y ∼I a. Since

y ∼I y and ∼I is a congruence relation, one can see that a ∼I x ∗ y ∼I a ∗ y = y (by (eBE3)).

Thus y ∈ [a]I . Therefore [a]I is a filter of X. �

Denote X
∼I

= {[x]I : x ∈ X}. We define a binary operation “⋆” on X
∼I

by [x]I ⋆ [y]I := [x ∗ y]I ,
in which is well defined by Theorem 3.9. We can define a binary relation “≼” on the quotient

set X
∼I

= {[x]I : x ∈ X} as follows

[a] ≼ [b] ⇐⇒ (∀x ∈ [a])(∃y ∈ [b])(x ≤ y),

where [a] and [b] are equivalence classes with respect to ∼I .
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Theorem 3.10. Let (X; ∗, A) be a self distributive eBE-algebra, F ∈ F (X) and a ∈ A. Then

( X
∼[a]F

; ⋆, [a]F ) is a BE-algebra.

Proof. Since A ⊆ F , we can see that A ⊆ [a]F , for all a ∈ A. Hence [a]F is a filter by Proposition

3.4 and so ∼[a]F is a congruence relation on X by Theorem 3.9. Now we have

(BE1) [x]F ⋆ [x]F = [x ∗ x]F = [a]F , since x ∗ x ∈ A ⊆ [a]F ,

(BE2) [x]F ⋆ [a]F = [x ∗ a]F = [a]F , since x ∗ a ∈ x ∗A ⊆ A ⊆ [a]F ,

(BE3) [a]F ⋆ [x]F = [a ∗ x]F = [x]F , since A ∗ x = {x} and so a ∗ x = x,

(BE4) [x]F ⋆ ([y]F ⋆ [z]F ) = [x ∗ (y ∗ z)]F = [y ∗ (x ∗ z)]F = [y]F ⋆ ([x]F ⋆ [z]F ).

�

Corollary 3.2. Let (X; ∗, A) be a self distributive eBE-algebra, F ∈ F (X) and |A| = n. Then

there exists at least n related quotient BE-algebras.

4. Conclusion and future works

Researchers proposed several kinds of algebraic structures related to some axioms in many-

valued logic used in many-valued mathematics. Different algebraic structures are important for

mathematics and for logic, in particular, non-classical logics and so related algebraic structures

are suitable for many-valued reasoning under uncertainty and vagueness.

The goal of this paper is to generalize the notion of BE-algebra by considering the non-empty

set substitution with constant 1.

As future works, we shall define the commutative eBE-algebras and we shall study the notion

of fuzzy structures on this algebra.
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