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NUMERICAL SOLUTION OF THE FIRST KIND FREDHOLM INTEGRAL

EQUATIONS BY PROJECTION METHODS WITH WAVELETS AS BASIS

FUNCTIONS

N.M. TEMIRBEKOV1, L.N. TEMIRBEKOVA2, M.B. NURMANGALIYEVA3

Abstract. In this paper, we review new works on approximate methods for solving the first

kind Fredholm integral equations. The Galerkin-Bubnov projection method with Legendre

wavelets is used for the numerical solution of the first kind Fredholm integral equations. Nu-

merical calculations and the proven theorem show a very strong sensitivity of the solution to

the accuracy of calculating double integrals for determining the elements of the matrix and

the right-hand side of the system of linear algebraic equations, which are determined by cu-

bature formulas or analytical formulas. Also, in this paper we obtain a priori estimates and

convergence of the projection methods with bases in the form of wavelets on half-intervals. The

performed comparative analysis shows that the Galerkin method with basis functions in the

form of Legendre wavelets is efficient in terms of accuracy and is easy to implement.

Keywords: Fredholm integral equation, Legendre wavelets, Galerkin-Bubnov method, error

estimate on half-intervals.
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1. Introduction

Many inverse problems of science and technology, in particular, inverse problems of math-

ematical geophysics, can be reduced to solving the first kind Fredholm integral equation. In

general, integral equations of this type are ill-posed for the given kernel and right-hand side.

These equations may not have a solution, and if a solution exists, then small perturbations of

the right-hand side strongly affect the solution.

There are several numerical methods for solving the first kind integral equations. Most of

the works are based on projection methods such as the Galerkin-Petrov method, the Bubnov-

Galerkin method, the moments method, the collocation method. One of the most attractive

developments in recent years is the use of wavelets as basis functions in projection methods.

The wavelet technique makes it possible to create very efficient algorithms in comparison with

known regularizing algorithms. Various wavelet bases are used in [21, 9, 18, 19, 3, 4, 1, 26]. K.

Maleknejad, S. Sohrabi [17] proposed an effective method based on using continuous Legendre

wavelet as a basis function for an approximate solution of the first kind Fredholm integral

equation. In the Galerkin method, Legendre wavelets are used as basis functions, and a system

of linear algebraic equations is obtained to determine the expansion coefficients. This system of

linear algebraic equations is solved by the conjugate gradient method. Several specific examples
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of the first kind Fredholm integral equation with known solutions are considered. The results of

numerical calculations using Mathematica 5 show very good convergence to the exact solution.

Xufeng Shang, Danfu Han [27] proposed an effective method for solving the first kind Fredholm

integral equations, similarly as in [17]. Continuous Legendre multiwavelets are used as a basis

in the Galerkin method.

In recent years, a lot of works devoted to the approximate solution of Fredholm integral

equations [23, 7, 15] have been published. In [23], two-dimensional Legendre wavelet bases are

used to numerically solve two-dimensional Fredholm integral equations. In [7], modern basic

numerical methods such as regularization, wavelet analysis, and multilevel iterations methods

are described in detail. This paper gives a concise summary of numerical methods for solving

the first kind Fredholm integral equations.

In [8], the sought and integrand functions are expanded in a Taylor series, and the first kind

Fredholm integral equation is transformed into a system of linear equations for the unknown

function and its derivative.

In [18], a numerical method is proposed for solving the first kind Fredholm integral equation

based on hybrid block-momentum functions and Legendre polynomials to obtain a high-precision

solution. The convergence analysis of the proposed method is given and the convergence rate is

determined.

K.Maleknejad, T.Lofti, K.Mahdiani [19] use orthogonal wavelets as a basis in projection

methods for the numerical solution. It is shown that the Galerkin wavelet method converges

provided the basis has the property of the best approximation.

In [3] wavelets are used as basis functions, and the method of moments is used as a projection

method. Special radial functions are considered as the kernel of the integral operator, and the

stability of the numerical solution is proved [12].

The properties of Chebyshev wavelets are effectively used to obtain a sparse matrix of a

system of linear equations for the expansion coefficients. The given numerical examples show

the validity and efficiency of using Chebyshev wavelets for an approximate solution to the first

kind Fredholm integral equation [4, 1]. Hybrid block-pulse methods are used to numerically solve

nonlinear integro-differential equations. On each half-interval, the sought function is expanded

using orthogonal Bernstein polynomials [6]. The concept of ill-posedness of the first kind fuzzy

Fredholm integral equations was considered in [11] for the first time. Fuzzy Fredholm integral

equations of the first kind are transformed into fuzzy integral equations of the second kind by

the Tikhonov regularization method.

In [13], the spectral Legendre wavelet method was proposed for the numerical solution of

nonlinear ordinary differential equations on large intervals. The Legendre-Gauss quadrature

formula is derived, where the roots of the Legendre polynomial are chosen as the collocation

points and the quadrature weights are determined by a formula defined through the derivative

of the Legendre polynomial at these points.

In [14], a pseudospectral method is proposed for solving nonlinear singular ordinary Thomas-

Fermi differential equations in a semi-infinite interval. The developed pseudospectral method is

based on rational Chebyshev functions of the second kind. Application of this method to the

Thomas-Fermi equation leads to a nonlinear algebraic system. The authors highlight three main

advantages of applying the method to the Thomas-Fermi equation.

In [16], an effective multi-domain pseudospectral method is used for the numerical solution

of a nonlinear fractional integro-differential equation. The fractional derivative is considered in

the Caputo sense. The original equation is replaced by the singular integro-differential Volterra

equation. The transformed problem in subintervals is reduced to systems of algebraic equations.
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Further, a pseudospectral method is used based on the shifted points of Legendre-Gauss colloca-

tions. In computational experiments, the accuracy of the solution increases either by increasing

the number of collocation points within the intervals, either by decreasing the grid step size.

In [20], the first kind classical Volterra integral equations have investigated, where the kernel

is discontinuous along continuous curves. The solution of the integral equation is searched in the

form of Taylor polynomials and the projection collocation method is used. Several preliminary

lemmas and the convergence theorem for the Taylor-collocation method are proved. The exam-

ples are solved by using the Taylor-collocation method and the numerical results are presented

in table.

In [2], a new computational method is proposed for solving nonlinear Fredholm integral equa-

tions of the second kind with weakly singular kernels. The use of a discrete analogue of the

Galerkin projection method will lead to the appearance of singular integrals. The solution of

the Fredholm integral equation will depend on the accuracy of their calculation. The authors

of this paper have overcome this problem by approximating these integrals with non-uniform

quadrature Gauss-Legendre formulas.

In [24], a constructive method is proposed for solving the first kind Fredholm integral equation

based on the theory of conjugate equations. The solution of the conjugate integral equation with

the right-hand side in the form of eigenfunctions of the basic Fredholm integral operator is solved

separately. Then the solution of the original integral equation is found as a linear combination

of the eigenfunctions of the Fredholm operator. The coefficients of this linear combination are

calculated as a definite integral of the product of the right-hand side and the solution of the

conjugate equation.

Among the iterative methods for solving Fredholm integral equations, the G.N. Polozhiy’s

method [21] is effective. This method converges uniformly for any improper values of the pa-

rameter λ in an equation of the second kind and converges on average for an equation of the

first kind.

From a computational point of view, the constructive method proposed in [21] has great

prospects.

In all of the above works, methods with bases in the form of wavelets, hybrid block-impulse

functions have been developed, but there is no analysis of the approximation error of the resid-

ual, estimates of the error on half-intervals. In the numerical solution of the first kind Fredholm

integral equations by projection methods with bases in the form of the wavelet, (1) the func-

tion interpolation, (2) requirement of an orthogonal projection is used. It is well known that

the piecewise polynomial interpolation process is convergent. Therefore, in this paper, we con-

sider the problem of obtaining a priori estimates and convergence of the projection methods

with bases in the form of wavelets on half-intervals. For a comparative analysis, numerical cal-

culations of the solution to the first kind Fredholm integral equation were carried out by the

Lavrentyev regularization method, the Polozhiy method, the constructive ”tracking” method,

and the Bubnov-Galerkin method with Legendre wavelets.

2. Orthonormal system of Legendre wavelets

Consider the first kind Fredholm integral equation

K[x, y] ≡
1∫

0

K(x, y)y(s)ds = f(x), x ∈ [0, 1], (1)
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where the kernel K(x, s) is a real continuous, square-summable and bounded function in the

domain G = {0 ≤ x ≤ 1, 0 ≤ s ≤ 1}. We apply the Galerkin-Bubnov method with the use of

the Legendre wavelets [17] to solve the integral equation (1):

ψn,m(t) =

{
(2m+ 1)

1
2 2

k−1
2 Lm(2kt− n̂), n̂−1

2k
≤ t < n̂+1

2k
,

0, for other t.
(2)

where k = 2, 3, ...; n = 1, 2, 3, ..., 2k−1; n̂ = 2n− 1; m = 0, 1, 2, ...,M − 1.

The Legendre polynomials of order l, Ll(t), are determined from the following recurrence

formula:
L0 = 1,

L1(t) = t,

Ll+1(t) =
2l+1
l+1 tLl(t)− l

l+1Ll−1(t), l = 1, 2, 3, ...

(3)

The set {Ll(t) : l = 0, 1, 2, ...} is a complete orthogonal set in the Hilbert space L2[−1, 1]. In

addition, the Legendre polynomials are bounded, i.e. |Ll(t)| ≤ 1, −1 ≤ t ≤ 1, l = 0, 1, 2, . . ..

In (2) and (3) m, l denote the degree of the Legendre polynomial, and k determines the

number of half-intervals on which the wavelets are defined.

If k = 2, M = 2, then n = 1, 2; n̂ = 1, 3 and m = 0, 1. For k = 2, M = 2, we obtain the

following Legendre wavelets:

ψ10(t) =

{√
2, 0 ≤ t < 1/2,

0, 1/2 ≤ t < 1.
(4)

ψ11(t) =

{√
6(4t− 1), 0 ≤ t < 1/2,

0, 1/2 ≤ t < 1.
(5)

ψ20(t) =

{
0, 0 ≤ t < 1/2,
√
2, 1/2 ≤ t < 1.

(6)

ψ21(t) =

{
0, 0 ≤ t < 1/2,
√
6(4t− 3), 1/2 ≤ t < 1.

(7)

If M = 3, then additionally it is necessary to define

ψ12(t) =


√

5
2(3(4t− 1)2 − 1), 0 ≤ t < 1/2,

0, 1/2 ≤ t < 1.

ψ22(t) =

0, 0 ≤ t < 1/2,√
5
2(3(4t− 3)2 − 1), 1/2 ≤ t < 1.

(8)

It is easy to verify [27] that the set {ψnm(t)} forms an orthonormal system in L2[0, 1].

3. The proposed numerical method

The orthonormal system (2) is used for the best approximation of the solution to equation

(1) in the Hilbert space, and the problem of its finding formally reduces to solving a system of

linear equations. The goal of best approximation is to develop representations of the function

y(x) with different levels of resolution.

Let {Vi} be a sequence of nested subspaces such that {0} ⊂ ... ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ L2(R).

The system {ψn,m(t)} introduced in Section 2 forms a Riesz basis for the space Vn [19].
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In the general case, any function f ∈ L2(R) can be approximated by its orthogonal projection

Pnf on the space Vn

Pnf(t) =
∑
m

(f, ψnm(t))ψnm(t), (9)

where Pnf is an approximation of f with the resolution 2−n. The best approximation is provided

by a sequence of approximations Pnf of increased accuracy up to a given function f [19].

We represent the solution of the integral equation (1) in the form

y(s) ≈
2k−1∑
n=1

M−1∑
m=0

Cnmψnm(s). (10)

The coefficients {Cnm} are unknown. By substituting (10) into (1), we have

1∫
0

K(x, s)

2k−1∑
n=1

M−1∑
m=0

Cnmψnm(s)

 ds = f(x). (11)

By virtue of linearity of (11), we integrate the function under the sum to obtain

2k−1∑
n=1

M−1∑
m=0

Cnm

1∫
0

K(x, s)ψnm(s)ds = f(x). (12)

According to the Bubnov-Galerkin method, the coefficients Cnm are determined from the require-

ment that the left-hand side of equation (12) becomes orthogonal to functions ψij . Therefore,

we multiply (12) scalarly by ψij(x), i = 1, 2, ..., 2k−1, j = 0, 1, ..,M − 1 to obtain

2k−1∑
n=1

M−1∑
m=0

Cnm

[
1∫
0

1∫
0

K(x, s)ψnm(s)ψij(x)dsdx

]
=

1∫
0

f(x)ψij(x)dx,

i = 1, 2, ..., 2k−1; j = 0, 1, ...,M − 1.

(13)

There is a 4-index matrix A in the square bracket which we expand into a 2-index matrix. The

matrices ||Cij || and ∥Fij∥ of the wavelet basis ψij(x), i = 1, 2, ..., 2k−1 = N, j = 0, 1, ..,M − 1

can be represented as vectors −→α l, bl, and a vector function
−→
ϕ l(x) of length l by using the

following ordering of indices:

l = (i− 1)M + j + 1, i = 1, 2, ..., N, j = 0, 1, ...,M − 1.

Then the vector dimension and the number of wavelet basis functions is equal to L = N ·M .

Thus, equation (13) can be written as

L∑
j=1

αj

[
1∫
0

1∫
0

K(x, s)ϕj(s)ϕi(x)dsdx

]
=

1∫
0

f(x)ϕi(x)dx, i = 1, 2, ..., L. (14)

or

Aα = b, (15)

in a matrix form, where

aij =
1∫
0

1∫
0

K(x, t)ϕi(x)ϕj(t)dtdx,

bi =
1∫
0

f(x)ϕi(x)dx,

i = 1, 2, ..., L; j = 1, 2, ..., L.

(16)
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and the desired solution of equation (1) can be written as

y(x) ≈
L∑
i=1

αiϕi(x). (17)

4. Convergence study

Assume that the integral operator K[x, y] is compact in Hilbert space V , and rewrite equation

(1) in an operator form

K[x, y] = f. (18)

From (12) we obtain the residual

rn(x) =
n−1∑
l=1

M−1∑
m=0

Clm

1∫
0

K(x, s)ψlm(s)ds− f(x), (19)

where n = 2k−1, . . ., or it can be written by using (10) and (18) as

rn(x) = K[x, yn]− f(x). (20)

It is necessary to require that the residual rn(x) tends to zero and the expansion of the function

yn(x) was a good solution to equation (1). We intend to show that a basis of Legendre wavelets

has the properties of the best approximation [3], then it follows from Galerkin’s methods of

solving (1) that yn(x) −→ y(x) as n −→ ∞.

Let V = L2[0, 1] and ⟨·⟩ denote the scalar product on V . Then by using (19), (20), the

Galerkin’s method (13) can be written as follows:

⟨rn(x), ψij(x)⟩ = 0, i = 1, 2, .., 2k−1, j = 0, 1, ..,M − 1. (21)

From (21) and (20), we have a linear system of the form ((15).

Consider the projection operator (10), which maps V into Vn for each y ∈ V , and define Pny

as a solution to the following problem:

∥y − Pny∥ = max
g∈Vn

∥y − g∥. (22)

The constructed wavelet basis (2) is orthonormal:

⟨ψnk, ψni⟩ = δik, k, i = 1, 2, ...,M − 1.

Therefore, the projection operator Pn can be written as [15]

Pny(x) =
2k−1∑
n=1

M−1∑
m=0

⟨ψnm, y⟩ψnm(x). (23)

The following lemma is valid for the projection operator Pn [17, 23].

Lemma 4.1. If y, g ∈ V and Pn is the projection operator defined in the form of (23), then

the following relations hold:

(Pny, g) = (y, Png), (24)

P 2
ny = Pny, (25)

(y − Pny, Png) = 0, (26)

∥y∥2 = ∥Pn∥2 + ∥y − Pny∥2, (27)

∥Pn∥ = 1, (28)

∥y − g∥2 = ∥y − Pny∥2 + ∥Pny − g∥2. (29)
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Proof. Transform the left-hand side of (24) using formula of the projection operators (23)

(Pny, g) =
1∫
0

{
n∑

l=1

M−1∑
m=0

(
1∫
0

y(t) · ψlm(t)dt

)
ψlm(x)

}
g(x)dx

=
n∑

l=1

M−1∑
m=0

(
1∫
0

y(t)ψlm(t)dt

)
1∫
0

g(x)ψlm(x)dx

=
n∑

l=1

M−1∑
m=0

1∫
0

y(t) · (g, ψlm)ψlm(t)dt = (y, Png).

(30)

Thus, (24) is proved.

To prove (25), consider

P 2
ny(x) =

n∑
l=1

M−1∑
m=0

(Pny(s), ψlm(s)) · ψlm(x) . (31)

Transform the scalar product included in (31) using the orthonormality of the functions system

{ψij(x)}

(Pny(s), ψlm(s)) =
1∫
0

Pny(s)ψlm(s)ds

=
1∫
0

(
n∑

i=1

M−1∑
j=0

(y, ψij)ψij(s))ψlm(s)ds

=
n∑

i=1

M−1∑
j=0

(y, ψij) ·
1∫
0

ψij(s)ψlm(s)ds = (y, ψlm).

(32)

Substitute (32) into (31) to obtain

P 2
ny(x) =

n∑
l=1

M−1∑
m=0

(y, ψlm)ψlm = Pny(x), (33)

which proves (25).

Using (25), we prove the formula (26)

(y − Pny, Png) = (y, Png)− (Pny, Png) = (y, Png)− (y, P 2
ng) = (y, Png)− (y, Png) = 0. (34)

The formulas (27), (28), and (29) are proved using (26).

The lemma is proved.

From (29) we have

∥y − yn∥2 = ∥y − Pny∥2 + ∥Pny − yn∥2. (35)

Let ε be an arbitrary small positive number, i.e. ε > 0. Then, by the property of best approxi-

mation and using the fact that UN
n=1Vn is dense in L2(R), there exists a function yn ∈ Vn such

that ∥y − yn∥ < ε. Then if m ≥ n, we have

∥y − Pmy∥ ≤ ∥y − ym∥ < ε. (36)

Therefore, for any function y ∈ L2(R), expanding in the form (23), we have

Pny −→ y as n −→ ∞. Now consider the residual rl(x) on the l -th half-interval

rl(x) =
M−1∑
m=0

Clm

l

2k−1∫
l−1

2k−1

K(x, s)ψlm(s)ds− f(x), x ∈

[
l − 1

2k−1
;

l

2k−1

]
, l = 1, 2, .., 2k−1. (37)

The kernel and the right-hand side of the integral equation (1) are assumed to be bounded:

0 < K0 ≤ |K(x, s)| ≤ K1, 0 ≤ F0 ≤ |f(x)| ≤ F1,

for (x, s) ∈ G, l = 1, 2, .., 2k−1; m = 0, 1, ..,M − 1.
(38)
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Lemma 4.2. For K(x, s), f(x) satisfying conditions (38), the following estimate holds:

∥rl(x)∥ ≤
(

2M−1
22(k−1)

)
K1F1
K0

+ (2M − 1)
1
2MF0, for x ∈

[
l−1
2k−1 ,

l
2k−1

)
. (39)

Proof. Represent the function in the right-hand side of (37) in the form of an expansion by

basic functions on the l th half-interval:

f(x) ≈
M−1∑
m=0

(f, ψlm)ψlm(x). (40)

Taking into account (38) and (40), we obtain from (37) that

|rl(x)| ≤
M−1∑
m=0

∣∣∣∣∣∣∣∣Clm

l

2k−1∫
l−1

2k−1

K(x, s)ψlm(s)ds−


l

2k−1∫
l−1

2k−1

f(s)ψlm(s)ds

ψlm(x)

∣∣∣∣∣∣∣∣ .
Estimate K(x, s) in the first term from above, and f and ψlm(x) in the second term from below

to obtain

|rl(x)| ≤
M−1∑
m=0

∣∣∣ClmK1 − F02
k−1
2

∣∣∣ (2M − 1)1/22
k−1
2

1

2k−1
.

Thus, we obtain the following inequality:

|rl(x)| ≤
(
2M − 1

2k−1

)1/2 M−1∑
m=0

∣∣∣ClmK1 − 2
k−1
2 F0

∣∣∣ . (41)

Then it follows that

|rl(x)| ≤
(
2M − 1

2k−1

)1/2

M(∥C∥K1 + 2
k−1
2 F0), (42)

where C is the solution to the system of linear equations (13), i.e.

AC = F,

where C is a matrix with elements Cij , and F is a matrix with elements (f, ψij), where i =

1, 2, , 2k−1; j = 0, 1, ,M − 1.

Let us estimate the norm of the four-index matrix A. According to the definition of the

matrix norm and the form of the matrix, we have from (13):

∥A∥ = max
1≤l≤2k−1, 0≤m≤M−1

2k−1∑
i=1

M−1∑
j=0

1∫
0

1∫
0

K(x, s)ψij(s)ψlm(s)dsdx

 .

Further, by summing up under the integral sign, we have

∥A∥ = max
1≤l≤2k−1, 0≤m≤M−1

 1∫
0

ψlm(x)dx

1∫
0

2k−1∑
i=1

M−1∑
j=0

ψij(s)

K(x, s)ds

 . (43)

We obtain an upper bound for the norm of the matrix A

∥A∥ = K1 max
1≤l≤2k−1, 0≤m≤M−1

{
1∫
0

ψlm(x)dx
1∫
0

[
2k−1∑
i=1

M−1∑
j=0

(2j + 1)
1
2 2

k−1
2 Lj(2

ks− n̂)

]
ds

}
≤

≤ 2
k−1
2 K1(2M − 1)

1
2M2k−1 max

1≤l≤2k−1, 0≤m≤M−1
|
1∫
0

ψlm(x)dx| ≤

≤ 2
3(k−1)

2 K1(2M − 1)
1
2M(2M − 1)

1
2 2

k−1
2 = 22(k−1)K1(2M − 1)M.
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Thus

∥A∥ ≤ 22(k−1)K1(2M − 1)M. (44)

Let us estimate the norm of matrix (43) from below:

∥A∥ ≥ K02
k−1
2 M2k−1 max

1≤l≤2k−1, 0≤m≤M−1

∣∣∣∣ 1∫
0

ψlm(x)dx

∣∣∣∣ ≥
≥ 2

3(k−1)
2 K0M2

k−1
2 = 22(k−1)K0M.

Taking into account inequality (44), we have from this relation that

22(k−1)K0M ≤ ∥A∥ ≤ 22(k−1)K1(2M − 1)M. (45)

The matrix A is symmetric therefore [5]

∥A−1∥ ≤ 1

∥A∥
. (46)

From (45), (46) we have

∥A−1∥ ≤ 1

22(k−1)K0M
. (47)

We have the following estimate for the solution of the system of linear algebraic equations (13):

∥C∥ ≤ ∥A−1∥∥F∥ ≤ ∥A−1∥∥f∥∥ψ∥ =
F1(2M − 1)1/22

k−1
2

22(k−1)K0M
.

Thus,

∥C∥ ≤ (2M − 1)1/2F1

2
3(k−1)

2 K0M
. (48)

Substitute (48) into (42) to obtain

∥rl(x)∥ ≤
(
2M − 1

2k−1

)1/2

M

(
(2M − 1)1/2F1K1

23/2(k−1)K0M
+ 2

k−1
2 F0

)
.

This gives estimate (39).

According to the Bubnov-Galerkin method, the coefficients Clm are determined from the

system of linear algebraic equations (13) with a symmetric matrix A. The matrix and right-

hand side of this system are calculated inaccurately, i.e. integrals are calculated with an error.

Then, instead of the system (15) presented for the solution, in fact, the following system is

solved:

A1α
∗ = b1, A1 = A+ δA, b1 = b+ δb. (49)

Let the estimates ∥δA∥ and ∥δb∥ be known. Let us estimate the error of the solution to the

system (15).

Let us denote solutions (15) and (41) by α and α∗, and the difference α∗ − α denote by δα.

Substituting the expressions A1, b1, and α
∗ into (49) to have

(A+ δa)(α+ δα) = b+ δb.

Subtracting (15) from this equality, we obtain

A(δa) + δAα+ δA(δα) = δb,

whence we get

A(δa) = δb− δAα− δA(δα),

and

δα = A−1(δb− δAα− δA(δα)). (50)
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To estimate the error of an approximate solution, the following theorem is valid.

Theorem 4.1. Let the matrix A have an inverse matrix, and let the condition

∥A−1∥∥δA∥ < 1, (51)

hold. Then the matrix A1 = A+ δA has an inverse matrix, and the following error estimate is

valid

∥δα∥ ≤ ∥A∥−1(∥δb∥+ ∥δA∥∥α∥)
1− ∥A−1∥∥δA∥

. (52)

The proof will use the following lemma [25].

Lemma 4.3. Let B be a square matrix satisfying the condition ∥B∥ < 1 and E be the

identity matrix. Then there exists a matrix (E +B)−1, and

∥(E +B)−1∥ ≤ 1

1− ∥B∥
. (53)

Proof. For any vector x ∈ V we have

∥(E +B)x∥ = ∥x+Bx∥ ≥ ∥x∥ − ∥Bx∥ ≥ ∥x∥ − ∥B∥∥x∥ = (1− ∥B∥)∥x∥ = δ∥x∥,

where δ = 1− ∥B∥ > 0.

In the inequality

∥(E +B)x∥ ≥ δ∥x∥ (54)

denote (E +B)x = y, x = (E + C)−1y and rewrite (54) as

∥y∥ ≥ δ∥(E +B)−1y∥.

From this we get

∥(E +B)−1y∥ ≤ 1

δ
∥y∥ =

1

1− ∥B∥
∥y∥.

The lemma is proved.

Proof of Theorem 4.1. Let us prove that there is an inverse matrix (A+ δA)−1.

A1 = A+ δA = A(E +A−1δA) = A(E +B),

where B = A−1δA. By condition (52), we have

∥B∥ = ∥A−1δA∥ ≤ ∥A−1∥∥δA∥ < 1,

therefore, according to Lemma 4.3, there exists (E +B)−1, and hence A−1
1 also exists.

We now prove inequality (52). From relation (50) we obtain the inequality

∥δα∥ ≤ ∥A−1∥∥δb∥+ ∥A−1∥∥δA∥∥α∥+ ∥A−1∥∥δA∥∥δα∥.

By condition (51) of the theorem, we have ∥A−1∥∥δA∥ < 1. Collecting the terms containing

∥δα∥ in the left-hand side, we obtain the estimate

∥δα∥ ≤ ∥A−1∥(∥δb∥+ ∥δA∥∥α∥)
1− ∥A−1∥∥δA∥

.

The theorem is proved.
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5. Numerical analysis

To illustrate the possibilities of the proposed numerical solution to the first kind Fredholm

integral equation, consider the following example:

1∫
0

(
xs+

x+ s

3
+

1

5

)
y(s)ds = 3x+

19

15
, 0 ≤ x ≤ 1.

with a symmetric kernel and exact solution

y(x) = 1 + 6x2.

In calculations, we assumed k = 2 and M = 2. In this case, the number of basis functions

and the dimension of the unknowns vector α will be L = 4. Cubature formulas were used to

calculate the double integrals

1∫
0

1∫
0

K(x, s)ϕj(s)ϕi(x)dsdx,

where h1 = 1
N1
, h2 = 1

N2
the cubature formulas of the rectangles were used. The number of

integration nodes was chosen by the Runge rule, and the most optimal number was turned out

to be n = 51. The results of numerical calculations at 11 nodes are shown in the following table.

Table 1.

i xi ỹ(xi) yE(xi) |ỹ(xi)− yE(xi)|
1 0 0.98730 1 0.012700

2 0.1 1.40862 1.06 0.348622

3 0.2 1.82994 1.24 0.589944

4 0.3 2.25127 1.54 0.711266

5 0.4 2.67259 1.96 0.712588

6 0.5 2.50174 2.5 0.001739

7 0.6 3.27233 3.16 0.112327

8 0.7 4.04291 3.94000 0.102915

9 0.8 4.8135 4.84000 0.026496

10 0.9 5.58409 5.86000 0.275908

11 1 6.35468 7 0.645320

Figure 1. Approximate solution
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Figure 2. The approximate and exact solutions

This example was numerically solved by many methods, including the Tikhonov regularization

method [25, 22], the Polozhiy method [21], and a constructive method with an integral ”tracking”

operator with Poisson kernel proposed in [10].

6. Conclusion

The use of wavelets for solving the first kind Fredholm integral equations by the Galerkin

method has shown enough efficiency. In addition, numerical calculations show the use of Le-

gendre wavelets as basis functions has a positive effect for the numerical or analytical calculation

of integrals in a computational scheme.
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