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ON THE INFLUENCE OF INTEGRAL PERTURBATIONS ON THE

BOUNDEDNESS OF SOLUTIONS OF A FOURTH-ORDER LINEAR

DIFFERENTIAL EQUATION
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Abstract. Sufficient conditions for the boundedness on the half-axis of all solutions of the

fourth-order linear Volterra integro-differential equation are established. Moreover, it is shown

that the corresponding linear homogeneous and inhomogeneous differential equations can have

unbounded solutions on the half-axis. Illustrative examples are given.
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1. Introduction

We assume that all appearing functions and their derivatives are continuous and the relations

are true when t ≥ t0, t ≥ τ ≥ t0; J = [t0,∞). We abbreviate IDE - integro-differential

equation; DE - differential equation.

Problem 1.1. To establish sufficient conditions of boundedness on half-interval J of all

solutions of the fourth-order IDE:

x(4)(t) +

3∑
k=0

ak(t)x(k)(t) + t∫
t0

Qk(t, τ)x
(k)(τ)dτ

 = f(t), t ≥ t0, (1)

in the case where the corresponding linear fourth-order DE

L(t, x) ≡ x(4)(t) + a3(t)x
′′′(t) + a2(t)x

′′(t) + a1(t)x
′(t) + a0(t)x(t) = 0, t ≥ t0, (10)

L(t, x) = f(t), t ≥ t0, (11)

can have unbounded solutions on J. As far as we know, this problem has not been studied by

anyone before. We are talking about solutions x(t) ∈ C4(J,R) of the IDE (1) with any initial

data x(k)(t0) (k = 0, 1, 2, 3). Every such solution exists and unique.
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2. Main results

To solve the above problem, we use a non-standard method of reduction to the system [1],

method of cutting functions [2, p.41], method of integral inequalities [6] are developed and

Lemma 3.3 about integral inequalities of the first kind by q(t)c ≡ q(t, c) [2, p.110 - 111].

Similar to [1] in the IDE (1) we make the following non-standard substitution:

x′′(t) + λ2x(t) =W (t)y(t), (2)

where 0 ̸= λ – some auxiliary parameter, and λ ∈ R; 0 < W (t) – some auxiliary weighting

function.

Let us denote

b3(t) ≡ a3(t) + 2W ′(t)
(
W (t)

)−1
, b2(t) ≡ a2(t) + a3(t)W

′(t)
(
W (t)

)−1
+W ′′(t)

(
W (t)

)−1 − λ2,

b1(t) ≡ [a1(t) − λ2a3(t)]
(
W (t)

)−1
, b0(t) ≡ [a0(t) − λ2a2(t) + λ4]

(
W (t)

)−1
, P0(t, τ) ≡(

W (t)
)−1[

Q0(t, τ) − λ2Q2(t, τ)
]
, P1(t, τ) ≡

(
W (t)

)−1[
Q1(t, τ) − λ2Q3(t, τ)

]
, P2(t, τ) ≡(

W (t)
)−1[

Q2(t, τ)W (τ)+Q3(t, τ)W
′(τ)

]
, K(t, τ) ≡

(
W (t)

)−1
Q3(t, τ)W (τ), F (t) ≡

(
W (t)

)−1
f(t).

Then instead of IDE (1) we have the following system:

x′′(t) + λ2x(t) =W (t)y(t),

y′′(t) + b3(t)y
′(t) + b2(t)y(t) + b1(t)x

′(t) + b0(t)x(t) +

t∫
t0

[
P0(t, τ)x(τ)+

+P1(t, τ)x
′(τ) + P2(t, τ)y(τ) +K(t, τ)y′(τ)

]
dτ = F (t), t ≥ t0.

(3)

Developing of the non-standard method of reduction to the system on the fourth-order IDE

(1) is to obtain the system (3) from the second order DE for x(t) and from the second order

IDE for y(t). This reduction is equivalent by virtue of the condition W (t) > 0.

Let [2]:

K(t, τ) =
n∑

i=0

Ki(t, τ), (K)

F (t) =
n∑

i=0

Fi(t), (F )

ψi(t) (i = 1..n) – some cutting functions,

Ri(t, τ) ≡ Ki(t, τ)
(
ψi(t)ψi(τ)

)−1
, Ei(t) ≡ Fi(t)

(
ψi(t)

)−1
(ψi(t) cut off, in particular, the growth,

non-smoothness, alternation of the terms of K(t, τ) and F (t)),

Ri(t, t0) = Ai(t) +Bi(t) (i = 1..n), (R)

ci(t) (i = 1..n) – some functions.

For any solution
(
x(t), y(t)

)
of the system (3), its first equation we multiply by x′(t), the second

equation – by y′(t) [7, p.194-217], add the resulting relations. Then we integrate between t0 and

t, including by parts, at the same time we introduce the conditions (K),(F ),(R) functions ψi(t),

Ri(t, τ), Ei(t), ci(t) (i = 1..n)), using lemmas 1.4, 1.5 [3]. Then after some transformations

(including, taking account of b2(t) ≡ γ20 + b2(t) − γ20 , constγ0 > 0) we obtain the following
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identity:

(
x′(t)

)2
+ λ2

(
x(t)

)2
+
(
y′(t)

)2
+ γ20

(
y(t)

)2
+

n∑
i=1

{
Ai(t)

(
Yi(t, t0)

)2−
−

t∫
t0

A′
i(s)

(
Yi(s, t0)

)2
ds+Bi(t)

(
Yi(t, t0)

)2 − 2Ei(t)Yi(t, t0) + ci(t)−

−
t∫

t0

[
B′

i(s)
(
Yi(s, t0)

)2 − 2E′
i(s)Yi(s, t0) + c′i(s)

]
ds+

t∫
t0

R′
iτ (t, τ)

(
Yi(t, τ)

)2
dτ−

−
t∫

t0

s∫
t0

R′′
isτ (s, τ)

(
Yi(s, τ)

)2
dτds

}
≡ c∗ + 2

t∫
t0

W (s)y(s)x′(s)ds+

+2

t∫
t0

y′(s)

{
F0(s)− b3(s)y

′(s)− [b2(s)− γ20 ]y(s)− b1(s)x
′(s)− b0(s)x(s)−

−
s∫

t0

[
P0(s, τ)x(τ) + P1(s, τ)x

′(τ) + P2(s, τ)y(τ) +K0(s, τ)y
′(τ)

]
dτ

}
ds,

(4)

where

Yi(t, τ) ≡
t∫
τ
ψi(η)y

′(η)dη (i = 1..n),

c∗ =
(
x′(t0)

)2
+ λ2

(
x(t0)

)2
+
(
y′(t0)

)2
+ γ20

(
y(t0)

)2
+

n∑
i=1

ci(t0).

Below we give the following lemma, which is applied in proof of our main theorem.

Lemma 2.1. [6]. Let for non-negative functions u(t), α(t), β(t), γ(t, τ) and const = c ≥ 0

satisfy the integral inequality

u(t) ≤ c+
t∫

t0

[
α(s)

(
u(s)

) 1
2 + β(s)u(s) +

s∫
t0

γ(s, τ)
(
u(τ)u(s)

) 1
2dτ

]
ds.

Then

u(t) ≤
{
√
c+

t∫
t0

α(s)exp
(
−

s∫
t0

V (η)dη
)
ds

}2

exp
( t∫
t0

V (s)ds
)
,

where

V (t) ≡ β(t) +
t∫

t0

γ(t, τ)dτ.

Theorem 2.1. Let 1) λ > 0, W (t) > 0, γ0 > 0; the presentation (K), (F ), (R) are satisfied;

2) Ai(t) ≥ 0, Bi(t) ≥ 0, B′
i(t) ≤ 0, R′

iτ (t, τ) ≥ 0, there are functions A∗
i (t) ≥ 0, ci(t), R

∗
i (t) ≥

0 such that A′
i(t) ≤ A∗

i (t)Ai(t),
(
E

(k)
i (t)

)2 ≤ B
(k)
i (t)c

(k)
i (t), R′′

itτ (t, τ) ≤ R∗
i (t)R

′
iτ (t, τ) (i =

1..n; k = 0, 1). Then for any solution (x(t), y(t)) of the system (3) the following energy estimate

is valid:

U(t) ≡
(
x′(t)

)2
+ λ2

(
x(t)

)2
+
(
y′(t)

)2
+ γ20

(
y(t)

)2
+

n∑
i=1

[
Ai(t)

(
Yi(t, t0)

)2
+

+

t∫
t0

R′
iτ (t, τ)

(
Yi(t, τ)

)2
dτ

]
≤M(t, c∗),

(5)
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where

M(t, c∗) ≡
{
√
c∗ +

t∫
t0

|F0(s)|exp
(
− 1

2

s∫
t0

V (η)dη
)
ds

}2

exp
( t∫
t0

V (s)ds
)
,

V (t) ≡
n∑

i=1

[
A∗

i (t) +R∗
i (t)

]
+ 2

{
γ−1
0 W (t) + |b3(t)|+ γ−1

0 |b2(t)− γ20 |+ |b1(t)|+

+λ−1|b0(t)|+
t∫

t0

[
λ−1|P0(t, τ)|+ |P1(t, τ)|+ γ−1

0 |P2(t, τ)|+ |K0(t, τ)|
]
dτ

}
.

Let, besides, 3) Aj(t) > 0, ψj(t) > 0,ψ′
j(t) ≥ 0 (1 ≤ j ≤ n) , qj(t, c∗) ≥ 0, q′j(t, c∗) ≥ 0,

q′j(t, c∗)
(
ψj(t)

)−1 ∈ L1(J,R+), where qj(t, c∗) ≡
(
Aj(t)

)− 1
2
(
M(t, c∗)

) 1
2 . Then y(t) = O(1).

Proof. First of all, note that the conditions
(
E

(k)
i (t)

)2 ≤ B
(k)
i (t)c

(k)
i (t) (i = 1..n; k = 0, 1)

are guaranteed the fulfillment of relationships

(−1)k
[
B

(k)
i (t)

(
Yi(t, t0)

)2 − 2E
(k)
i Yi(t, t0) + c

(k)
i (t)

]
≥ 0 (k = 0, 1; i = 1..n). (6)

Under the conditions 1, 2 also U(t) ≥ 0, taking into account (6) and inequalities:

|x′(t)| ≤
(
U(t)

) 1
2 , |x(t)| ≤ λ−1

(
U(t)

) 1
2 , |y′(t)| ≤

(
U(t)

) 1
2 , |y(t)| ≤ γ−1

0

(
U(t)

) 1
2 ,

n∑
i=1

Ai(t)
(
Yi(t, t0)

)2 ≤ U(t),
n∑

i=1

t∫
t0

R′
iτ (t, τ)

(
Yi(t, τ)

)2
dτ ≤ U(t),

(7)

from identity(4) we obtain the following integral inequality:

U(t) ≤ c∗ + 2

t∫
t0

{
|F0(s)|

(
U(s)

) 1
2 +

[
γ−1
0 W (s) +

1

2

n∑
i=1

(
A∗

i (s) +R∗
i (s)

)
+

+|b3(s)|+ γ−1
0 |b2(s)− γ20 |+ |b1(s)|+ λ−1|b0(s)|

]
U(s)+

+
(
U(s)

) 1
2

s∫
t0

[
λ−1|P0(s, τ)|+ |P1(s, τ)|+ γ−1

0 |P2(s, τ)|+ |K0(s, τ)|
](
U(τ)

) 1
2dτ

}
ds.

(8)

Applying to the integral inequality (8) the above lemma, we have

U(t) ≤M(t, c∗). (9)

From (9) by virtue of (7) we have the following estimate:
n∑

i=1

Ai(t)
(
Yi(t, t0)

)2 ≤M(t, c∗).

Hence for 1 ≤ j ≤ n, taking into account the notation Yi(t, t0), we get

Aj(t)

( t∫
t0

ψj(η)y
′(η)dη

)2

≤M(t, c∗),

from which we obtain the following integral inequality of the first kind:∣∣∣∣
t∫

t0

ψj(η)y
′(η)dη

∣∣∣∣ ≤ (
Aj(t)

)− 1
2
(
M(t, c∗

) 1
2 ≡ qj(t, c∗). (10)
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To integral inequality (10) we apply Lemma 3.3 [2, p.110-111], which gives an estimate

|y(t)| ≤ |y(t0)|+
(
ψj(t0)

)−1
qj(t0, c∗) +

t∫
t0

q′j(s, c∗)
(
ψj(s)

)−1
ds. (11)

Based on the last of conditions 3) from (11) follows

|y(t)| ≤ |y(t0)|+
(
ψj(t0)

)−1
qj(t0, c∗) +

∞∫
t0

q′j(s, c∗)
(
ψj(s)

)−1
ds <∞,

i.e. y(t) = O(1). The theorem is proved.

From this theorem by Bi(t) ≡ 0, Ai(t) ≡ Ri(t, t0), Fi(t) ≡ Ei(t) ≡ ci(t) ≡ 0, F0(t) ≡ 0 follows

Corollary 2.1. If 1) λ > 0, W (t) > 0, γ0 > 0; presentation (K) is true; Ri(t, t0) ≥ 0,

R′
iτ (t, τ) ≥ 0, there are functions A∗

i (t) ≥ 0, R∗
i (t) ≥ 0, such that R′

it(t, t0) ≤ A∗
i (t)Ri(t, t0),

R′′
itτ (t, τ) ≤ R∗

i (t)R
′
iτ (t, τ) (i = 1..n), then for any solution

(
x(t), y(t)

)
of system (3) with F (t) ≡ 0

the following energy estimate is valid:

U(t) ≤M1(t, c∗), (12)

where

M1(t, c∗) ≡ c∗exp

( t∫
t0

V (s)ds

)
.

If, in addition, 2) Rj(t, t0) > 0, ψj(t) > 0, ψ′
j(t) ≥ 0 (1 ≤ j ≤ n), qj1(t, c∗) ≥ 0, q′j1(t, c∗) ≥ 0,

q′j1(t, c∗)
(
ψj(t)

)−1 ∈ L1(J,R+),

where qj1(t, c∗) ≡
(
Rj(t, t0)

)− 1
2
(
M1(t, c∗)

) 1
2 ,

then y(t) = O(1).

Theorem 2.2. If all the conditions of Theorem 2.1 are satisfied and W (t) ∈ L1(J,R+\{0}),then
any solution of the fourth-order IDE (1) x(t) = O(1), i.e. it is bounded to a half-interval J .

The validity of this theorem is obtained from the following integral Cauchy representation [4,

p.393-394]:

x(t) = x(t0) cosλ(t− t0) +
1

λ
x′(t0) sinλ(t− t0) +

1

λ

t∫
t0

[sinλ(t− s)]W (s)y(s)ds,

from replacement (2), i.e. from first equation of system (7) for any initial values x(t0), x
′(t0).

We give the simplest illustrative examples.

Example 2.1. For the fourth-order linear homogeneous IDE

x(4)(t) +
1

6
(t+ 1)−1x′′′(t)− 1

2
(t+ 1)−2x′′(t) + (t+ 1)−3x′(t)− (t+ 1)−4x(t)+

+

t∫
t0

{[
| cos(tτ)|+Q3(t, τ)

]
x(τ) +

[
1

t− τ + 2
+Q3(t, τ)

]
x′(τ) +

[
1 +Q3(t, τ)

]
x′′(τ)+

+Q3(t, τ)x
′′′(τ)

}
dτ = 0, t ≥ 0,

(13)

where

Q3(t, τ) ≡
e−t+τ

t− τ + 1
+ e−t+τ

[
exp

(
sin t

t+ 4

)
+ τ

] 1
2 exp(t5 + τ5 + et + eτ + exp et + exp eτ ),
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all conditions of the Theorem 2.2 are fulfilled when λ = 1, W (t) ≡ e−t, γ0 = 1, here t0 = 0,

b3(t) ≡ 1
6(t+ 1)−1 − 2, b2(t) ≡ −1

2(t+ 1)−2 − 1
6(t+ 1)−1,

b1(t) ≡
[
(t+1)−3− 1

6(t+1)−1

]
et,b0(t) ≡

[
1+ 1

2(t+1)−2−(t+1)−4

]
et, P0(t, τ) ≡ et

[
| cos(tτ)|−1

]
,

P1(t, τ) ≡ et

t−τ+2 , P2(t, τ) ≡ et−τ , K(t, τ) ≡ 1
t−τ+1 +

[
exp

(
sint
t+4

)
+ τ

] 1
2

exp(t5 + τ5 + et +

eτ + exp et + exp eτ ), K0(t, τ) ≡ 1
t−τ+1 , n = 1 ,ψ1(t) ≡ exp(t5 + et + exp et), R1(t, τ) ≡[

exp

(
sin t
t+4

)
+ τ

] 1
2

, A∗
1(t) ≡ R∗

1(t) ≡ t+5
(t+4)2

. So, all solutions of this IDE (13) are bounded on

the half-axis R+. However, the corresponding DE for the IDE (13): L(t, x) ≡ x(4)(t) + 1
6(t +

1)−1x′′′(t)− 1
2(t+1)−2x′′(t)+ (t+1)−3x′(t)− (t+1)−4x(t) = 0, t ≥ 0, has unbounded solutions

on the R+, which follows from the general solution of this DE: x(t) = (t + 1)c1 + (t + 1)2c2 +

(t+ 1)3c3 + (t+ 1)−
1
6 c4 (c1, c2, c3, c4 – arbitrary constants).

Example 2.2. The fourth-order linear nonhomogeneous equation (1), where functions ak(t) (k =

0, 1, 2, 3), Qj(t, τ) (j = 0, 1, 2) same as in IDE (13),

Q3(t, τ) ≡
e−t+τ

t− τ + 1
+ e−t+τ

{[
exp

(
sin t

t+ 4

)
+ τ

] 1
2 +

1

t− τ + 5

}
exp(t5 + τ5+

+et + eτ + exp et + exp eτ ), f(t) ≡ − e−t

t+ 10
− exp(t5 + et + exp et)

t+ 6
, t ≥ 0,

is satisfied all conditions of Theorem 2.2 for the same λ = 1, W (t) ≡ e−t, γ0 = 1, bk(t) (k =

0, 1, 2, 3), Pj(t, τ) (j = 0, 1, 2), K0(t, τ), n = 1, ψ1(t) ≡ exp(t5+et+exp et), as in example 1, here

R1(t, τ) ≡
[
exp

(
sin t
t+4

)
+ τ

] 1
2

+ 1
t−τ+5 , A1(t) ≡

[
exp

(
sin t
t+4

)
+ τ

] 1
2

, B1(t) =
1

t+5 , F0(t) ≡ − 1
t+10 ,

E1(t) ≡ − 1
t+6 , c1(t) ≡ 1

t+5 . Consequently, all solutions to such an IDE are bounded on the

half-axis. At the same time, the corresponding linear nonhomogeneous DE:

L(t, x) ≡ − e−t

t+ 10
− exp(t5 + et + expet)

t+ 6
, t ≥ 0 (1∗1)

has unbounded solutions. This follows from the structure of the general solution of the DE

(1∗1): x(t) = x0(t) + xr(t), where x0(t) – general solution of homogeneous DE for IDE (13),

xr(t) – particular solution of DE (1∗1), which will also be nonbounded on the half axis R∗,

that is obtained from the Cauchy formula for solving the Cauchy problem for (1∗1) with any

xk(t0) (k = 0, 1, 2, 3).

3. Conclusion

As examples 1 and 2 are showed, we managed to find a class of IDE of the form (1) for which

the above problem is solvable. Note that cutting functions ψi(t) (i = 1..n) play the main role in

solving the problem posed above. They help to investigate the asymptotic properties of solutions

of new classes of Volterra type integro-differential equations on semiaxes.

Solvability connection of integral inequality of the first kind [2, p.110-111] and solvability of

integral equation of the first kind [5] can be investigated.
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