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ON QUASI-DUAL BAER MODULES

T. AMOUZEGAR1, Y. TALEBI2

Abstract. We introduce and study the notions of quasi-dual Baer modules, FI-T -non-cosingular

modules and FI-K-modules. We show that a module M is a quasi-dual Baer and FI-K-module

if and only if it is FI-lifting and FI-T -non-cosingular. A necessary condition for a direct sum

of quasi-dual Baer modules to be quasi-dual Baer are obtained. A characterization is given of

when a module is quasi-dual Baer, a necessary condition being that the endomorphism ring

itself is a left quasi-Baer ring.
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1. Introduction

Throughout this paper, R will denote an arbitrary associative ring with identity, M a unitary
right R-module and S = EndR(M) the ring of all R-endomorphisms of M . Kaplansky introduced
the concept of Baer rings in 1955 [3] and Clark introduced the notion of quasi-Baer rings in 1967
[2]. A ring R is called left Baer (quasi-Baer) if the left annihilator of any nonempty subset
(left ideal) of R is generated as a left ideal by an idempotent. Rizvi and Roman introduced
the concepts of Baer and quasi-Baer modules in [5]. According to [5], M is called a Baer
(respectively quasi-Baer) module if the right annihilator in M of any left ideal (respectively
ideal) of S is a direct summand of M . In [10], Keskin-Tütüncü and Tribak dualized the concept
of Baer modules. According to [10], a module M is called a dual Baer module if for every
submodule N of M , there exists an idempotent e in S such that {φ ∈ S | Imφ ⊆ N} = eS. In
this work we introduce the notion of quasi-dual Baer modules. A module M is called a quasi-
dual Baer module if for every fully invariant submodule N of M , there exists an idempotent e

in S such that {φ ∈ S | Imφ ⊆ N} = eS. Obviously, any dual Baer module is quasi-dual Baer.
We will use the notation N ≤e M to indicate that N is essential in M (i.e., ∀0 6= L ≤

≤ M, N ∩ L 6= 0 ); N ¿ M means that N is small in M (i.e., ∀L � M, L + N 6= M);
N E M means that N is a fully invariant submodule of M (i.e., ∀φ ∈ EndR(M), φ(N) ⊆ N).
The notation N ≤⊕ M denotes that N is a direct summand of M . For all I ⊆ S, the left
and right annihilators of I in S are denoted by `S(I) and rS(I), respectively. We also denote
rM (I) = {x ∈ M | Ix = 0}, EM (I) =

∑
φ∈I Imφ, for I ⊆ S; `S(N) = {φ ∈ S | φ(N) = 0},

DS(N) = {φ ∈ S | Imφ ⊆ N}, for N ⊆ M .
Recall that a module M is called a lifting module if, every submodule N of M can be written

in the form N = A ⊕D where A is a direct summand of M and D ¿ M [4]. A module M is
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called a FI-lifting module if, every fully invariant submodule N of M can be written in the
form N = A⊕D where A is a direct summand of M and D ¿ M .

In Section 2, we introduce and study the notions of quasi-dual Baer modules, FI-T -non-
cosingular modules and FI-K-modules. Close links of quasi-dual Baer modules to FI-lifting
modules are established. We prove that an arbitrary direct sum of quasi-dual Baer modules
that are isomorphic to a factor of each other is quasi-dual Baer. We show that any direct
summand of a quasi-dual Baer module is quasi-dual Baer. We remark that some of our results
obtained in this paper are dual to those obtained by [5].

In Section 3, we show that the endomorphism ring of a quasi-dual Baer module is a left
quasi-Baer ring and obtain a necessary condition for the converse to hold true.

Lemma 1.1. Let M be a module, and M = M1⊕M2 be a direct sum decomposition. If N E M

then N = N1 ⊕N2 where Ni = N ∩Mi E Mi, for i = 1, 2.

Proof. See [5, Lemma 1.10]. ¤

Lemma 1.2. Let M be a module, with M = N1⊕N2 and let F1EN1. Then there exists F2EN2,
so that F1 ⊕ F2 E M .

Proof. See [5, Lemma 1.11]. ¤

Lemma 1.3. For N ≤ M, I ≤ S, P E M, L E S, the following hold:
(i) EM (DS(EM (I))) = EM (I)
(ii) DS(EM (DS(N))) = DS(N)
(iii) EM (L) E M

(iv) DS(P ) E S.

Proof. (i) EM (DS(EM (I))) =
∑

φ∈DS(EM (I)) Imφ ⊆ EM (I). Conversely, since I ⊆ DS(EM (I)),
then EM (I) ⊆ EM (DS(EM (I))).

(ii) Similar to the proof of (i).
(iii) Let LES and f ∈ S = EndR(M), then f(

∑
φ∈L Imφ =

∑
φ∈L Imφ ≤ ∑

φ∈L Imφ (since
φ ∈ L and L E S, thus fφ ∈ L). Therefore EM (L) E M .

(iv) We observe that, DS(P ) ≤ SS . On the other hands, if φ ∈ DS(P ), then ∀ψ ∈ S,

ψφ(M) ⊆ ψ(P ) ⊆ P since P E M . Hence ψφ ∈ DS(P ). Therefore DS(P ) E S. ¤

2. Quasi-dual Baer modules

We say that a module M is a quasi-dual Baer module if for every fully invariant submodule
N of M , there exists an idempotent e in S such that DS(N) = eS, or equivalently, for every
ideal I of S, EM (I) is a direct summand of M . Any semisimple module is a quasi-dual Baer.
Obviously, any dual Baer module is quasi-dual Baer.

Lemma 2.1. Let M be a quasi-dual Baer module and φ ∈ S. If Imφ E M , then Imφ ≤⊕ M .

Proof. Let φ ∈ S such that Imφ E M . We have Imφ = EM (SφS) since Imφ E M . Thus
Imφ ≤⊕ M . ¤

The quasi-dual Baer property does not always transfer from a module to each of its submodules
as the next example demonstrates.

Example 2.1. The Z-module Q is quasi-dual Baer but the submodule Z is not a quasi-dual
Baer Z-module.

Next, we see that a direct summand of a quasi-dual Baer module inherits the property.
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Theorem 2.1. Every direct summand of a quasi-dual Baer module M is quasi-dual Baer.

Proof. Let N ≤⊕ M, then there exists e2 = e ∈ S such that N = eM . Assume that F E N ,
then by Lemma 1.2, there exists G E (1 − e)M such that F ⊕ G E M . Since M is quasi-dual
Baer, I = DS(F ⊕G) E⊕ S. As EndR(N) = eSe, and I E S, eIe = eSe ∩ I. We have I = fS

where f2 = f ∈ S, and so eIe = efSe. But since fS E S, ef ∈ fS. Hence ef = fef . We
can write eIe = efSe = fefSe = efefSe = (efe)(efSe). Notice that (efe)2 = efe. We have
(efe)(efSe) ⊆ (efe)(eSe), but the reverse: let (efe)(ese) ∈ (efe)(eSe), then efeese = efese =
= fefese = efefese = (efe)(ef(es)e) ∈ (efe)(efSe). Hence we have that eIe ≤⊕ eSe. Now
we show that eIe = DeSe(F ). We see that eie(M) ⊆ ei(M) ⊆ e(F ⊕ G) = eF + eG ⊆ F , for
i ∈ I, therefore eIe ⊆ DeSe(F ). Assume that 0 6= eje ∈ eSe such that eje(M) ⊆ F . Hence
eje(M) ⊆ F ⊕ G and so eje ∈ DeSe(F ⊕ G) = I. But eje = eejee = e(eje)e ∈ eIe. Therefore
DeSe(F ) = eIe ≤⊕ eSe. F is arbitrary, hence N is quasi-dual Baer. ¤

Recall that a module M is said to have the FI-summand sum property (FI-SSP) if the sum of
two fully invariant direct summands is again a direct summand. A module M has the FI-strong
summand sum property (FI-SSSP) if the sum of any number of fully invariant direct summands
is again a direct summand.

Lemma 2.2. Every quasi-dual Baer module M has the FI-strong summand sum property (FI-
SSSP ).

Proof. Let eiM E M where e2
i = ei ∈ S, and i ∈ Λ (Λ is an index set). Then eiS E S (i ∈ Λ).

Define I =
∑

i∈Λ eiS, then I E S. So
∑

i∈Λ eiM =
∑

i∈Λ EM (eiS) = EM (I) ≤⊕ M . Thus M

satisfies the FI-SSSP. ¤

The following example shows that the converse of Lemma 2.2 is not true, in general.

Example 2.2. Consider the Z-module Zpn , where p is prime, n ∈ N and n > 1. Zpn satisfies the
FI-SSSP as it is indecomposable but Zpn is not a quasi-dual Baer Z-module: Let φ ∈ EndZ(Zpn)
such that φ(x) = px, ∀x ∈ Zpn . The morphism φ is not 0 (p.1 = p 6= 0 modulo pn, where n > 1);
ImφCM and since Zpn is hollow, Imφ cannot be a summand. Therefore Zpn is not a quasi-dual
Baer Z-module.

Theorem 2.2. Let M be a module and for all φ ∈ S, Imφ E M . Then M is quasi-dual Baer if
and only if M has the FI-strong summand sum property (FI-SSSP ) and Imφ ≤⊕ M , ∀φ ∈ S.

Proof. By Lemmas 2.1 and 2.2, M has the FI-strong summand sum property (FI-SSSP) and
Imφ ≤⊕ M , ∀φ ∈ S. Conversely, let I be any ideal of S. For each φ ∈ I we have Imφ E⊕ M .
Thus EM (I) =

∑
φ∈I Im φ ≤⊕ M , by FI-SSSP. Hence M is quasi-dual Baer. ¤

Theorem 2.3. Let M be a module and for all φ ∈ S, Imφ E M . Then M is quasi-dual Baer if
and only if M is dual Baer.

Proof. It follows from Theorem 2.2 and [10, Theorem 2.1]. ¤

Following [7], the module M is called non-cosingular if for every non-zero module N and
every non-zero homomorphism f : M → N, Im f is not a small submodule of N . In [9], Keskin-
Tütüncü and Tribak introduced the concept of T -non-cosingular modules. According to [9], a
module M is called T -non-cosingular if, ∀φ ∈ EndR(M), Im φ ¿ M implies that φ = 0.
In this paper we introduce the notion of FI-T -non-cosingular modules. A module M is called
FI-T -non-cosingular if, for any I E S such that EM (I) = eM ⊕ D, where e2 = e ∈ S and
D ¿ M , we get that EM (I) = eM . All semisimple modules are FI-T -non-cosingular.
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Proposition 2.1. Let M be an R-module. Then:
(i) M is T -non-cosingular if and only if, for all I ≤ SS, EM (I) = eM ⊕D where e2 = e ∈ S

and D ¿ M , implies that I ∩ (1− e)S = 0.
(ii) M is FI-T -non-cosingular if and only if, for all IES, EM (I) = eM⊕D where e2 = e ∈ S

and D ¿ M , implies that I ∩ (1− e)S = 0.

Proof. (i) Let I ≤ SS such that EM (I) = eM ⊕ D, where e2 = e ∈ S and D ¿ M . Then
EM (I ∩ (1− e)S) ⊆ EM (I) ∩ (1− e)M = (eM ⊕D) ∩ (1− e)M ⊆ (1− e)M ∩ (1− e)D. Since
D ¿ M, (1− e)D ¿ M . Therefore (1− e)M ∩ (1− e)D ¿ M . Hence EM (I ∩ (1− e)S) ¿ M .
By T -non-cosingularity of M , I ∩ (1− e)S = 0.

Conversely, let I ≤ SS and EM (I) ¿ M . Then, by hypothesis, I ∩ S = 0. Thus I = 0.
(ii) Let I E S such that EM (I) = eM ⊕D, where e2 = e ∈ S and D ¿ M . Since M is FI-T -

non-cosingular, EM (I) = eM . Then EM (I∩(1−e)S) ⊆ EM (I)∩(1−e)M = eM ∩(1−e)M = 0.
Therefore I ∩ (1− e)S = 0.

Conversely, let I E S such that EM (I) = eM ⊕D, where e2 = e ∈ S and D ¿ M . Then, by
hypothesis, we have that I∩(1−e)S = 0. Thus 0 = EM (I∩(1−e)S) = EM (I) ∩∑

φ∈(1−e)S Im φ.
Then EM (I) ∩ Imφ = 0, ∀φ ∈ (1− e)S. Since (1− e) ∈ (1− e)S, EM (I) ∩ (1− e)M = 0. Let
L ≤ EM (I) and D+L = EM (I) = eM⊕D. Then D+L+(1−e)M = (eM⊕D)⊕(1−e)M = M .
Since D ¿ M, L+(1− e)M = M . Then L+((1− e)M ∩EM (I)) = EM (I). Hence L = EM (I),
and so D ¿ EM (I). Since D ≤⊕ EM (I) and D ¿ EM (I), D = 0. Therefore EM (I) = eM . ¤

Corollary 2.1. Every T -non-cosingular module is FI-T -non-cosingular.

Note that every module which is quasi-dual Baer, lifting but not dual Baer has the property
that it is FI-T -non-cosingular but not T -non-cosingular.

Recall that a module M is said to be a K-module if, Imφ � N for all 0 6= φ ∈ S implies
N ¿ M (equivalently, for all N ≤ M, DS(N) = 0, implies N ¿ M) [10]. We say that a module
M is a FI-K-module if, for every N E⊕ M and N ′ E N such that Imφ � N ′, ∀φ ∈ EndR(N),
we get that N ′ ¿ N . All lifting and FI-lifting modules are FI-K-modules (Lemma 2.3).

Proposition 2.2. Let M be an R-module. Then:
(i) M is a K-module if and only if, for all N ≤ M, EM (DS(N)) ≤⊕ M implies that N =

= EM (DS(N))⊕D such that D ¿ M .
(ii) M is a FI-K-module if and only if, for all N E M, EM (DS(N)) ≤⊕ M implies that

N = EM (DS(N))⊕D, where D ¿ M .

Proof. (i) Let EM (DS(N)) = eM , for some e2 = e ∈ S. By Lemma 1.3, DS(N) = DS(eM).
Since DS(eM) ∩ DS((1 − e)M ∩ N) = 0 and DS((1 − e)M ∩ N) ⊆ DS(N) = DS(eM), we
obtain that DS((1 − e)M ∩ N) = 0. As M is a K-module, (1 − e)M ∩ N ¿ M . Then
N = EM (DS(N))⊕ ((1− e)M ∩N), where (1− e)M ∩N ¿ M .

Conversely, let N ≤ M and DS(N) = 0. Then EM (DS(N)) = 0. By assume, N =
= EM (DS(N))⊕D, where D ¿ M . Then N = D ¿ M .

(ii) Let EM (DS(N)) = eM , for some e2 = e ∈ S. By using the proof of (i), it is enough to
show that N ∩ (1− e)M E M . As N E M , then DS(N) E S. So eM = EM (DS(N)) E M . Hence
(1− e)M E M . Therefore N ∩ (1− e)M E M .

Conversely, let N E⊕ M and N ′ E N such that Imφ � N ′, ∀φ ∈ EndR(N) = S′. Then
DS′(N ′) = 0 and so EN (DS′(N ′)) = 0. By assume, N ′ = EN (DS′(N ′)) ⊕ D, where D ¿ M .
Then N ′ = D ¿ M . Hence N ′ ¿ N . ¤

Corollary 2.2. Every K-module is a FI-K-module.
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Any module which is dual Baer, FI-lifting but not lifting has the property that it is a FI-K-
module but not a K-module. For example, Q is a FI-K-module but not a K-module.

Lemma 2.3. Every FI-lifting module M is a FI-K-module.

Proof. Let N E⊕ M . Then by [8, Proposition 2.10], N is FI-lifting. Take N ′ E N such that
Imφ � N ′, ∀φ ∈ EndR(N). By the FI-lifting property N ′ = B ⊕ D such that B ≤⊕ N and
D ¿ N . Assume B 6= 0, hence N = B⊕C for some R-module C. Then the canonical projection
π2 of N onto B has the property that π2(N) ⊆ B ⊆ N ′, which is a contradiction. Hence B = 0.
Then N ′ = D ¿ N and the proof is complete. ¤

In general, the converse of Lemma 2.3 is not true. The Z-module Z is a FI-K-module but is
not FI-lifting.

Proposition 2.3. Let M be a quasi-dual Baer FI-K-module. Then M is FI-lifting.

Proof. Let N E M and DS(N) = eS for some e2 = e ∈ S (by the quasi-dual Baer property).
Hence EM (DS(N)) = eM ≤⊕ M . By Proposition 2.1, and since M is a FI-K-module, we get
that N = eM ⊕D, where D ¿ M . Hence M is FI-lifting. ¤

Recall that a module M is called strongly FI-lifting if, every fully invariant submodule N

of M can be written in the form N = A⊕D where A is a fully invariant direct summand of M

and D ¿ M [8]. It is clear that every strongly FI-lifting module is FI-lifting.

Remark 2.1. In the proof of Proposition 2.3 we get that eM E M ( since N E M , then
eS = DS(N) E S, hence eM = EM (DS(N)) E M), and so we obtain that M is strongly FI-
lifting.

Lemma 2.4. Every quasi-dual Baer module M is FI-T -non-cosigular.

Proof. Let IES, with EM (I) = eM⊕D, where e2 = e ∈ S, and D ¿ M . Then by the quasi-dual
Baer property, EM (I) ≤⊕ M . Hence D ≤⊕ M . Therefore D = 0 and so EM (I) = eM . ¤

The converse of Lemma 2.4 may not be true. For example, the Z-module Z is FI-T -non-
cosigular but is not quasi-dual Baer.

Proposition 2.4. Let M be a FI-T -non-cosingular FI-lifting module. Then M is quasi-dual
Baer.

Proof. Let I ES. We have that EM (I)EM , and by the FI-lifting property we get that EM (I) =
= eM ⊕ D such that e2 = e ∈ S and D ¿ M . By FI-T -non-cosingularity we have EM (I) =
eM . ¤

Remark 2.2. We note that FI-T -non-cosingularity in Proposition 2.4, is not superfluous. For
example the Z-module Zpn , where p is prime, n ∈ N and n > 1 is FI-lifting but is not a quasi-dual
Baer Z-module.

The next result exhibits close connections between quasi-dual Baer modules and FI-lifting
modules.

Theorem 2.4. The following are equivalent for any module M :
(i) M is a FI-lifting and FI-T -non-cosingular module;
(ii) M is a quasi-dual Baer and FI-K-module.

Proof. By Lemmas 2.3, 2.4 and Propositions 2.3, 2.4. ¤
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Remark 2.3. Theorem 2.4 is a useful source of examples of quasi-dual Baer modules. For
example, if R is a right hereditary ring, then every injective module is non-cosingular by [7,
Proposition 2.7]. Since every non-cosingular module is FI-T -non-cosingular, every injective FI-
lifting module is quasi-dual Baer by Theorem 2.4.

The following Theorem exhibits close links of quasi-dual Baer modules to the strongly FI-
lifting modules.

Theorem 2.5. The following are equivalent for any module M :
(i) M is a strongly FI-lifting and FI-T -non-cosingular module;
(ii) M is a quasi-dual Baer and FI-K-module.

Proof. By Remark 2.1 and Theorem 2.4. ¤

Corollary 2.3. Let M be a FI-T -non-cosingular module. Then M is FI-lifting if and only if
M is strongly FI-lifting.

Proof. By Theorems 2.4 and 2.5. ¤

We note that, if M is not FI-T -non-cosingular then an FI-lifting module need not be strongly
FI-lifting by [8, Remark 3.8].

In general, a direct sum of quasi-dual Baer modules is not quasi-dual Baer, as the following
example shows.

Example 2.3. Consider the Z-module M = Zp∞ ⊕ Zp and the endomorphism f : M → M

defined by f(x + ȳ) = cy with x ∈ Zp∞ , y ∈ Z and c is a non-zero element of Zp∞ such
that cpZ = 0. It is clear that Imf = cZ which is a non-zero submodule of M . Note that

S = EndZ(Zp∞ ⊕ Zp) =
(

EndZ(Zp∞) HomZ(Zp, Zp∞)
0 Zp

)
where EndZ(Zp∞) is the ring of

p-adic integers. Consider the ideal I = SfS of S, we have EM (I) = EM (SfS) =
∑

φ∈SfS Im φ.
Since Zp∞ is a fully invariant submodule of M , EM (SfS) is a submodule of Zp∞ . So EM (SfS) is
a non-zero small submodule of M because Zp∞ is hollow. Thus M is not a FI-T -non-cosingular
Z-module. By Lemma 2.4, M is not quasi-dual Baer.

Next, we provide some necessary conditions for a (finite) direct sum of quasi-dual Baer mod-
ules to be quasi-dual Baer.

Theorem 2.6. Let M1 and M2 be quasi-dual Baer modules. If ∀x ∈ Mi, ∃χ ∈ HomR(Mj , Mi)
such that x ∈ Imχ (i 6= j, i, j = 1, 2), then M1 ⊕M2 is a quasi-dual Baer module.

Proof. Let S = EndR(M1 ⊕ M2), and let I E S. Then EM1⊕M2(I) E M1 ⊕ M2, hence, using
Lemma 1.1, EM1⊕M2(I) = N1 ⊕N2, where Ni E Mi, i = 1, 2. As mentioned,

S =
(

S1 HomR(M2, M1)
HomR(M1, M2) S2

)
.

Since I E S we have the following properties:
I1 = {φ ∈ S1 | φ = α11 with (αij)i, j=1, 2 ∈ I}E S1

I2 = {φ ∈ S2 | φ = α22 with (αij)i, j=1, 2 ∈ I}E S2

We also define I12 = {ψ ∈ HomR(M1, M2) | ψ = α12 with (αij)i, j=1, 2 ∈ I} and I21 = {ψ ∈
∈ HomR(M2, M1) | ψ = α21 with (αij)i, j=1, 2 ∈ I}.

Let N ′
1 = EM1(I1). We have that N1 = N ′

1 + (
∑

φ∈I21
Imφ), (or

∑
φ∈I Im φ ∩ M1 =∑

θ∈I1
Imθ +

∑
ψ∈I21

Imφ). Since M1 is a quasi-dual Baer module, EM1(I1) ≤⊕ M1. We also
have

∑
φ∈I21

Imφ ≤ ∑
θ∈I1

Im θ = EM1(I1) = N ′
1. Then N1 = N ′

1 ≤⊕ M1. ¤
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Theorem 2.7. Let {Mi}i∈Λ be a family of quasi-dual Baer modules. If each Mi is isomorphic
to a factor of Mj , ∀i 6= j, i, j ∈ Λ, then M =

⊕
i∈Λ Mi is quasi-dual Baer.

Proof. Let Si be the endomorphism ring of Mi, ∀i ∈ Λ. The endomorphism ring of M, S, is a
ring of matrices, with elements of Si in the ii-position, and maps Mj → Mi in the ij-position,
∀i, j ∈ Λ, i 6= j. We need to show that ∀I ES, EM (I) ≤⊕ M . But since EM (I)EM, EM (I) =⊕

i∈Λ EM (I)∩Mi. We only have to analyze, hence, the column morphism (i.e., matrices) taking
Mi into M , for an i ∈ Λ. Similar to the proof of Theorem 2.8, we have that the ith column of
I ES has elements from HomR(Mi, Mj) in the remaining places (call the union of all these sets
ω ). EM (I)∩Mi = EMi(Ii) + (

∑
φ∈ω Imφ). But M ′

i = EMi(Ii) ≤⊕ Mi, since Mi is a quasi-dual
Baer module. If we take a φ ∈ ω, for example φ : Mj → Mi where i, j ∈ Λ and i 6= j, then
φψij ∈ Ii, where ψij : Mi → Mj is an epimorphism. Hence Imφ = Im φψij ≤ EMi(Ii), then∑

φ∈ω Imφ ≤ EMi(Ii). Then EM (I) ∩Mi = EMi(Ii) ≤⊕ Mi. Using this argument for all i ∈ Λ,
we obtain that EM (I) =

⊕
i∈Λ EMi(Ii) ≤⊕

⊕
i∈Λ Mi = M. ¤

Theorem 2.8. Let {Mi}i∈F be a family of modules. If M = ⊕i∈F Mi is quasi-dual Baer, then∑
φ∈HomR(Mi, Mj)

Imφ ≤⊕ Mj for all i, j ∈ F and i 6= j.

Proof. For simplifying notation assume we have M1 and M2. We concentrate on M1⊕M2, which
is also quasi-dual Baer. Let Ni =

∑
Im φφ ∈ HomR(Mj , Mi), i, j ∈ {1, 2} and i 6= j. We

show first that N1 ⊕N2 E M1 ⊕M2. Take α ∈ EndR(M1 ⊕M2); i.e.

α =
(

φ11 φ12

φ21 φ22

)

where φij : Mj → Mi, for i, j ∈ {1, 2}. Obviously φ11(N1) = φ11(
∑

φ:M2→M1
Im φ) =∑

φ:M2→M1
Imφ11φ ⊆ N1. Hence N1 E M1. Similarly N2 E M2.

We have φ12(N2) = φ12(
∑

φ:M1→M2
Im φ) =

∑
φ:M1→M2

Imφ12φ. Since Imφ12φ ≤ Im φ12, then
φ12(N2) =

∑
φ:M1→M2

Imφ12φ ≤ Imφ12 ≤ N1. Similarly φ21(N1) ≤ N2. Hence we get that
N1 ⊕N2 E M1 ⊕M2.

Let us now show that N1⊕N2 ≤⊕ M1⊕M2. Take DS12(N1⊕N2), where S12 = EndR(M1⊕M2).
Looking at α ∈ DS12(N1 ⊕ N2), α a matrix as above, we notice the following: φ11(M1) +

φ12(M2) ⊆ N1. Then φ11(M1) ⊆ N1, hence φ11 ∈ DS1(N1). Similarly φ22 ∈ DS2(N2), where
S1 = EndR(M1) and S2 = EndR(M2). At the same time, α ∈ EndR(M1 ⊕ M2) such that
φ11 ∈ DS1(N1), φ22 ∈ DS2(N2) and φ12, φ21 are arbitrary in their respective Homs will have
the property α ∈ DS12(N1 ⊕N2). Hence

DS12(N1 ⊕N2) =
(

DS1(N1) HomR(M2, M1)
HomR(M1, M2) DS2(N2)

)

Since DS12(N1⊕N2))ES12, EM1⊕M2(DS12(N1⊕N2))EM1⊕M2. Hence EM1⊕M2(DS12(N1⊕
N2)) = N ′

1 ⊕ N ′
2, where N ′

1 = EM1⊕M2(DS12(N1 ⊕ N2)) ∩ M1 and N ′
2 = EM1⊕M2(DS12(N1 ⊕

N2)) ∩ M2. It is easily checked that N ′
1 = EM1(DS1(N1)) + (

∑
ψ∈HomR(M2, M1) Imφ). Since

EM1(DS1(N1)) ⊆ N1 and
∑

ψ∈HomR(M2, M1) Imψ = N1, N ′
1 = N1. Similarly for N ′

2 = N2.
As a result, we obtain that EM1⊕M2(DS12(N1 ⊕ N2)) = N1 ⊕ N2. In addition to this, since

M1 ⊕ M2 is quasi-dual Baer, EM1⊕M2(DS12(N1 ⊕ N2)) ≤⊕ M1 ⊕ M2. Hence N1 ⊕ N2 ≤⊕
M1 ⊕ M2. In conclusion (since the indexes were chosen arbitrarily), if M is quasi-dual Baer,
then

∑
φ∈HomR(Mi, Mj)

Imφ ≤⊕ Mj for i, j ∈ {1, 2}, i 6= j. ¤

Recall that a module M is said to have C2 condition if ∀N ≤ M with N ∼= M ′ ≤⊕ M , we
have N ≤⊕ M . We say that M have FI-C2 condition if ∀N E M with N ∼= M ′ ≤⊕ M , we have
N ≤⊕ M .

Proposition 2.5. Every quasi-dual Baer module has FI-C2 condition.
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Proof. Let M be a quasi-dual Baer module and N be any fully invariant submodule of M

such that ψ : eM ∼= N for some e2 = e ∈ EndR(M). Set φ = ψe ∈ EndR(M). Then
Imφ = ψeM = N ≤⊕ M as M is quasi-dual Baer. ¤

Recall that a module M is said to have D2 condition if ∀N ≤ M with M/N ∼= M ′ ≤⊕ M , we
have N ≤⊕ M . We say that M have FI-D2 condition if ∀N E M with M/N ∼= M ′ ≤⊕ M , we
have N ≤⊕ M .

Proposition 2.6. Consider the following conditions for an R-module M :
(i) M is a quasi-dual Baer module with FI-D2 condition;
(ii) M has FI-C2 condition and FI-D2 condition and ∀φ ∈ S with Imφ E M , Imφ is iso-

morphic to a direct summand of M ;
(iii) ∀φ ∈ S with Imφ E M and Kerφ E M , we have Im φ ≤⊕ M and Kerφ ≤⊕ M .
Then (i) ⇒ (ii) ⇒ (iii). If M has FI-SSSP property, then (iii) ⇒ (i).

Proof. (i) ⇒ (ii) By Proposition 2.5.
(ii) ⇒ (iii) Let φ ∈ S. Since M is quasi-dual Baer, M/Kerφ ∼= Im φ ≤⊕ M . Thus Kerφ ≤⊕

M by FI-D2 condition.
(iii) ⇒ (i) It suffices to show that M has FI-D2 condition. Let N be a fully invariant

submodule of M such that ψ : M/N ∼= M ′ ≤⊕ M . Set φ = ψπ ∈ S. Then Kerφ = Kerψπ =
N ≤⊕ M . ¤

3. The endomorphism ring of a quasi-dual Baer module

In this section we give a characterization of a quasi-dual Baer module in terms of its endo-
morphism ring.

Proposition 3.1. Let M be a quasi-dual Baer module. Then S = EndR(M) is a left quasi
Baer ring.

Proof. Let I be an ideal of S. Since M is quasi-dual Baer, EM (I) = eM where e2 = e ∈ S. It
suffices to show `S(I) = S(1 − e). Since for all φ ∈ I, Imφ ⊆ ∑

φ∈I Im φ = EM (I) = eM , we
have (1− e)φ = 0. Thus (1− e) ∈ `S(I). Now if s ∈ `S(I), then s(

∑
φ∈I Imφ) = 0. So seM = 0.

Therefore s = s(1− e) ∈ S(1− e). ¤

Corollary 3.1. Let M be a T -non-cosingular FI-lifting module. Then S is a left quasi-Baer
ring.

Proof. By Propositions 2.4 and 3.1. ¤

Our next example shows that the converse of Proposition 3.1 may not be true.

Example 3.1. Let M = ZZ be an Z-module. Then EndR(ZZ) ' Z is a quasi-Baer ring, but ZZ
is not a quasi-dual Baer module.

Theorem 3.1. The following are equivalent for a module M :
(1) M is a quasi-dual Baer module;
(2) EM (I) = rM (`S(I)) for every ideal I of S and S is a left quasi-Baer ring.

Proof. (1) ⇒ (2) Let I be an ideal of S. Since M is quasi-dual Baer, there exists e2 = e ∈ S

such that EM (I) = eM . Thus (1 − e) ∈ `S(I). Let m ∈ rM (`S(I)). Then (1 − e)m = 0, so
m ∈ eM = EM (I). Therefore EM (I) = rM (`S(I)). By Proposition 3.1, S is a left quasi-Baer
ring.
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(2) ⇒ (1) Let I be an ideal of S and `S(I) = Sf , for some f2 = f ∈ S. Hence ∀φ ∈ I, fφ = 0.
So φ = (1 − f)φ and φM ⊆ (1 − f)M . Thus EM (I) ⊆ (1 − f)M . But (1 − f)M ⊆ rM (Sf) =
rM (`S(I)) = EM (I). Therefore M is a quasi-dual Baer module. ¤
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