ON GENERALIZED CLASS OF p-VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS

R.M. EL-ASHWAH¹, M.K. AOUF², H.M. ZAYED³

ABSTRACT. In this paper we introduce and study new class $F_{p,\theta}(\gamma,\beta)$ of p-valent functions with negative coefficients. We obtain coefficients inequalities, distortion theorems, extreme points and radii of close to convexity, starlikeness and convexity for the class $F_{p,\theta}(\gamma,\beta)$. Also modified Hadamard products of several functions belonging to the class $F_{p,\theta}(\gamma,\beta)$ are study here. Finally, we investigate several distortion inequalities involving fractional calculus.

Keywords: Analytic, p-valent functions, Hadamard product, fractional calculus operators.

AMS Subject Classification: 30C45.

1. Introduction

Let $T_p(\theta)$ denote the class of functions of the form:

$$f(z) = z^p - \sum_{k=1}^{\infty} a_{p+k} z^{p+k} \left(e^{i\theta} a_{p+k} \ge 0; \ |\theta| < \frac{\pi}{2}; \ p \in \mathbb{N} = \{1, 2, ...\} \right), \tag{1}$$

which are analytic and p-valent in the open unit disc $U = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. Also, let $F_{p,\theta}(\gamma,\beta)$ denote the class of functions $f(z) \in T_p(\theta)$ which satisfy

$$Re\left\{e^{i\theta}\left((1-\gamma)\frac{f(z)}{z^p} + \gamma\frac{f'(z)}{pz^{p-1}}\right)\right\} > \frac{\beta}{p},\tag{2}$$

where $0 \le \frac{\beta}{p} < \cos \theta$, $|\theta| < \frac{\pi}{2}$, $\gamma \ge 0$, $p \in \mathbb{N}$ and $z \in U$.

We note that for suitable choices of γ , θ and p, we obtain the following subclasses:

- (1) $F_{p,0}(\gamma,\beta) = F_p(\gamma,\beta)$ ($0 \le \beta < p, \ \gamma \ge 0, \ p \in \mathbb{N}$) (see Lee et al. [4] and Aouf and Darwish [2]);
- (2) $F_{1,0}(\gamma,\beta) = F(\gamma,\beta)$ ($0 \le \beta < 1, \ \gamma \ge 0$) (see Bhoosnurmath and Swamy [3]);
- (3) $F_{1,\theta}(1,\beta) = A(\theta,\beta) \ (0 \le \beta < \cos \theta, \ |\theta| < \frac{\pi}{2})$ (see Sekine [7]).

2. Coefficient estimates

Unless otherwise mentioned, we assume throughout this paper that

$$e^{i\theta}a_{p+k} \ge 0, \ 0 \le \frac{\beta}{p} < \cos\theta, \ |\theta| < \frac{\pi}{2}, \ \gamma \ge 0 \text{ and } p, k \in \mathbb{N}.$$

¹Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt,

²Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt,

³Department of Mathematics, Faculty of Science, Menofia University, Shebin Elkom 32511, Egypt, e-mail: r_elashwah@yahoo.com, mkaouf127@yahoo.com, hanaazayed42@yahoo.com

Manuscript received February 2013.

Theorem 2.1. Let the function f(z) be given by (1.1). Then $f(z) \in F_{p,\theta}(\gamma,\beta)$ if and only if

$$\sum_{k=1}^{\infty} e^{i\theta} \left(1 + \frac{\gamma k}{p} \right) a_{p+k} \le \cos \theta - \frac{\beta}{p}. \tag{3}$$

Assume that the condition (3) holds true, then it is sufficient to show that the value for

$$e^{i\theta}\left((1-\gamma)\frac{f(z)}{z^p}+\gamma\frac{f'(z)}{pz^{p-1}}\right),$$

lie in a circle centered at a point $e^{i\theta}$ whose radius is $\cos \theta - \frac{\beta}{p}$. Indeed, we have

$$\left| e^{i\theta} \left((1 - \gamma) \frac{f(z)}{z^p} + \gamma \frac{f'(z)}{pz^{p-1}} \right) - e^{i\theta} \right| =$$

$$= \left| e^{i\theta} \sum_{k=1}^{\infty} \left(1 + \frac{\gamma k}{p} \right) a_{p+k} z^k \right| \le$$

$$\le \sum_{k=1}^{\infty} e^{i\theta} \left(1 + \frac{\gamma k}{p} \right) a_{p+k} \le$$

$$\le \cos \theta - \frac{\beta}{p}.$$

Conversely, assume that

$$Re\left\{e^{i\theta}\left((1-\gamma)\frac{f(z)}{z^p}+\gamma\frac{f'(z)}{pz^{p-1}}\right)\right\} > \frac{\beta}{p},$$

which is equivalent to

$$Re\left\{\sum_{k=1}^{\infty}e^{i\theta}\left(1+\frac{\gamma k}{p}\right)a_{p+k}z^{k}\right\}<\cos\theta-\frac{\beta}{p}.$$

Choose values of z on the real axis so that

$$\sum_{k=1}^{\infty} e^{i\theta} \left(1 + \frac{\gamma k}{p} \right) a_{p+k} z^k,$$

is real. Letting $z \to 1^-$ along the real axis, we have

$$\sum_{k=1}^{\infty} e^{i\theta} \left(1 + \frac{\gamma k}{p} \right) a_{p+k} \le \cos \theta - \frac{\beta}{p},$$

and hence the proof of Theorem 2.1 is completed.

Corollary 2.1. Let the function f(z) defined by (1.1) be in the class $F_{p,\theta}(\gamma,\beta)$. Then

$$|a_{p+k}| \le \frac{p\cos\theta - \beta}{p + k\gamma}.\tag{4}$$

The result is sharp for the function

$$f(z) = z^p - \frac{p\cos\theta - \beta}{p + k\gamma} e^{-i\theta} z^{p+k}.$$
 (5)

3. Distortion theorems

Theorem 3.1. Let the function f(z) defined by (1) be in the class $F_{p,\theta}(\gamma,\beta)$, then for $z \in U$, we have

$$|z|^p - \frac{p\cos\theta - \beta}{p+\gamma} |z|^{p+1} \le |f(z)| \le |z|^p + \frac{p\cos\theta - \beta}{p+\gamma} |z|^{p+1}.$$
 (6)

Furthermore

$$p|z|^{p-1} - \frac{(p+1)(p\cos\theta - \beta)}{(p+\gamma)}|z|^p \le |f'(z)| \le p|z|^{p-1} + \frac{(p+1)(p\cos\theta - \beta)}{(p+\gamma)}|z|^p.$$
 (7)

The result is sharp for the function f(z) given by

$$f(z) = z^{p} - \frac{p\cos\theta - \beta}{p + \gamma}e^{-i\theta}z^{p+1}(z = \pm |z|e^{i\theta}).$$
 (8)

Proof. It is easy to see from Theorem 2.1 that

$$\frac{p+\gamma}{p\cos\theta-\beta}\sum_{k=1}^{\infty}|a_{p+k}|\leq\sum_{k=1}^{\infty}\frac{p+k\gamma}{p\cos\theta-\beta}|a_{p+k}|\leq1.$$

Then

$$\sum_{k=1}^{\infty} |a_{p+k}| \le \frac{p\cos\theta - \beta}{p+\gamma}.\tag{9}$$

Making use of (9), we have

$$|f(z)| \ge |z|^p - |z|_{k=1}^{p+1} |a_{p+k}| \ge |z|^p - \frac{p\cos\theta - \beta}{p+\gamma} |z|^{p+1},$$
 (10)

and

$$|f(z)| \le |z|^p + |z|_{k=1}^{p+1} |a_{p+k}| \le |z|^p + \frac{p\cos\theta - \beta}{p+\gamma} |z|^{p+1},$$
 (11)

which proves the assertion (6).

From (9) and Theorem 2.1, it follows also that

$$\sum_{k=1}^{\infty} (p+k) |a_{p+k}| \le \frac{(p+1)(p\cos\theta - \beta)}{(p+\gamma)}.$$
 (12)

Consequently, we have

$$|f'(z)| \ge p|z|^{p-1} - |z|_{k=1}^p {}^{\infty}(p+k) |a_{p+k}| \ge p|z|^{p-1} - \frac{(p+1)(p\cos\theta - \beta)}{(p+\gamma)} |z|^p,$$
 (13)

and

$$|f'(z)| \le p|z|^{p-1} + |z|_{k=1}^p {}^{\infty}(p+k)|a_{p+k}| \le p|z|^{p-1} + \frac{(p+1)(p\cos\theta - \beta)}{(p+\gamma)}|z|^p,$$
 (14)

which proves the assertion (7). Since each of equalities in (6) and (7) is satisfied by the function f(z) given by (8), our proof of Theorem 3.1 is thus completed.

4. Closure theorems

Let the functions $f_j(z)$ be defined, for j = 1, 2, ..., m, by

$$f_j(z) = z^p - \sum_{k=1}^{\infty} a_{p+k,j} z^{p+k} \ (e^{i\theta} a_{p+k,j} \ge 0; \ |\theta| < \frac{\pi}{2}).$$
 (15)

Theorem 4.1. Let the functions $f_j(z)$ (j = 1, 2,, m) defined by (15) be in the class $F_{p,\theta}(\gamma, \beta)$. Then the function h(z) defined by

$$h(z) = z^p - \sum_{k=1}^{\infty} b_{p+k} z^{p+k}, \tag{16}$$

also belongs to the class $F_{p,\theta}(\gamma,\beta)$, where

$$b_{p+k} = \frac{1}{m} \sum_{j=1}^{m} a_{p+k,j}.$$
 (17)

Proof. Since $f_j(z)$ (j = 1, 2, ..., m) are in the class $F_{p,\theta}(\gamma, \beta)$, it follows from Theorem 2.1, that

$$\sum_{k=1}^{\infty} e^{i\theta} \left(1 + \frac{\gamma k}{p} \right) a_{p+k,j} \le \cos \theta - \frac{\beta}{p},$$

for every j = 1, 2,, m. Hence

$$\sum_{k=1}^{\infty} e^{i\theta} \left(1 + \frac{\gamma k}{p} \right) b_{p+k} = \sum_{k=1}^{\infty} e^{i\theta} \left(1 + \frac{\gamma k}{p} \right) \left(\frac{1}{m} \sum_{j=1}^{m} a_{p+k,j} \right) =$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{k=1}^{\infty} e^{i\theta} \left(1 + \frac{\gamma k}{p} \right) a_{p+k,j} \right) \le \frac{1}{m} \sum_{i=1}^{m} \left(\cos \theta - \frac{\beta}{p} \right) \le \cos \theta - \frac{\beta}{p}.$$

By Theorem 2.1, it follows that $h(z) \in F_{p,\theta}(\gamma,\beta)$. This completes the proof of Theorem 4.1. \square

Theorem 4.2. Let the functions $f_j(z)$ (j = 1, 2, ..., m) defined by (15) be in the class $F_{p,\theta}(\gamma, \beta_j)$. Then the function h(z) defined by

$$h(z) = z^p - \sum_{k=1}^{\infty} \left(\frac{1}{m} \sum_{j=1}^m a_{p+k,j}\right) z^{p+k},$$
(18)

is in the class $F_{p,\theta}(\gamma,\beta)$, where

$$\beta = \min_{1 \le j \le m} \{\beta_j\}. \tag{19}$$

Proof. Since $f_j(z)$ (j = 1, 2, ..., m) are in the class $F_{p,\theta}(\gamma, \beta_j)$, it follows from Theorem 2.1, that

$$\sum_{k=1}^{\infty} e^{i\theta} \left(1 + \frac{\gamma k}{p} \right) a_{p+k,j} \le \cos \theta - \frac{\beta_j}{p},$$

for every j = 1, 2, ..., m. Hence

$$\sum_{k=1}^{\infty} e^{i\theta} \left(1 + \frac{\gamma k}{p} \right) \left(\frac{1}{m} \sum_{j=1}^{m} a_{p+k,j} \right) = \frac{1}{m} \sum_{j=1}^{m} \left(\sum_{k=1}^{\infty} e^{i\theta} \left(1 + \frac{\gamma k}{p} \right) a_{p+k,j} \right) \le$$

$$\leq \frac{1}{m} \sum_{j=1}^{m} \left(\cos \theta - \frac{\beta_j}{p} \right) \le \frac{1}{m} \sum_{j=1}^{m} \left(\cos \theta - \frac{\beta}{p} \right) \le \cos \theta - \frac{\beta}{p}.$$

By Theorem 2.1, it follows that $h(z) \in F_{p,\theta}(\gamma,\beta)$. This completes the proof of Theorem 4.2.

Theorem 4.3. Let the functions $f_j(z)$ (j = 1, 2, ..., m) defined by (15) be in the class $F_{p,\theta}(\gamma, \beta)$. Then the function h(z) defined by

$$h(z) = \sum_{j=1}^{m} c_j f_j(z),$$
 (20)

is also in the class $F_{p,\theta}(\gamma,\beta)$, where

$$\sum_{i=1}^{m} c_j = 1. (21)$$

Proof. Assume that

$$h(z) = \sum_{j=1}^{m} c_j f_j(z) = z^p - \sum_{k=1}^{\infty} \left(\sum_{j=1}^{m} c_j a_{p+k,j} \right) z^{p+k}.$$
 (22)

Then it follows that

$$\sum_{k=1}^{\infty} \left(1 + \frac{\gamma k}{p} \right) e^{i\theta} \left(\sum_{j=1}^{m} c_j a_{p+k,j} \right) = \sum_{j=1}^{m} c_j \left(\sum_{k=1}^{\infty} e^{i\theta} \left[1 + \frac{\gamma k}{p} \right] a_{p+k,j} \right) \le \left(\cos \theta - \frac{\beta}{p} \right) \sum_{j=1}^{m} c_j \le \cos \theta - \frac{\beta}{p}.$$

By Theorem 2.1, it follows that $h(z) \in F_{p,\theta}(\gamma,\beta)$. This completes the proof of Theorem 4.3.

Theorem 4.4. Let $f_p(z) = z^p$ and

$$f_{p+k}(z) = z^p - \frac{p\cos\theta - \beta}{p + k\gamma} e^{-i\theta} z^{p+k}.$$
 (23)

Then f(z) is in the class $F_{p,\theta}(\gamma,\beta)$ if and only if can be expressed in the form

$$f(z) =_{k=0}^{\infty} \mu_{p+k} f_{p+k}(z), \tag{24}$$

where $\mu_{p+k} \geq 0$ and $\sum_{k=0}^{\infty} \mu_{p+k} = 1$.

Proof. Assume that

$$f(z) = \sum_{k=0}^{\infty} \mu_{p+k} f_{p+k}(z) = z^p - \sum_{k=1}^{\infty} \frac{p \cos \theta - \beta}{p + k\gamma} e^{-i\theta} \mu_{p+k} z^{p+k} .4.11$$
 (25)

Then it follows that

$$\sum_{k=1}^{\infty} e^{i\theta} \left(1 + \frac{\gamma k}{p} \right) \left(\frac{p \cos \theta - \beta}{p + k \gamma} \right) e^{-i\theta} \mu_{p+k} = \left(\cos \theta - \frac{\beta}{p} \right) \sum_{k=1}^{\infty} \mu_{p+k} = \left(\cos \theta - \frac{\beta}{p} \right) (1 - \mu_p) \le \cos \theta - \frac{\beta}{p},$$

which implies that $f(z) \in F_{p,\theta}(\gamma,\beta)$.

Conversely, assume that the function f(z) defined by (1) be in the class $F_{p,\theta}(\gamma,\beta)$. Then

$$a_{p+k} \le \frac{(p\cos\theta - \beta)}{(p+k\gamma)}e^{-i\theta}.$$

Setting

$$\mu_{p+k} = \frac{(p+k\gamma)}{(p\cos\theta - \beta)}e^{i\theta}a_{p+k},$$

where

$$\mu_p = 1 - \sum_{k=1}^{\infty} \mu_{p+k}$$
,

we can see that f(z) can be expressed in the form (24). This completes the proof of Theorem 4.4.

Corollary 4.1. The extreme points of the class $F_{p,\theta}(\gamma,\beta)$ are the functions $f_p(z)=z^p$ and

$$f_{p+k}(z) = z^p - \frac{p\cos\theta - \beta}{p + k\gamma} e^{-i\theta} z^{p+k}.$$
 (26)

5. Radii of Close-to-Convexity, Starlikeness and Convexity

Theorem 5.1. Let the function f(z) defined by (1) be in the class $F_{p,\theta}(\gamma,\beta)$. Then f(z) is p-valent close-to-convex of order δ $(0 \le \delta < p)$ in $|z| \le r_1$, where

$$r_1 = \inf_{k \ge 1} \left\{ \frac{(p+k\gamma)(p-\delta)}{(p\cos\theta - \beta)(k+p)} \right\}^{\frac{1}{k}}.$$
 (27)

The result is sharp and the extremal function is given by (5).

Proof. We must show that

$$\left| \frac{f'(z)}{z^{p-1}} - p \right| \le p - \delta \text{ for } |z| \le r_1, \tag{28}$$

where r_1 is given by (27). Indeed we find from (1) that

$$\left| \frac{f'(z)}{z^{p-1}} - p \right| \le \sum_{k=1}^{\infty} (p+k) |a_{p+k}| |z|^k.$$

Thus

$$\left|\frac{f'(z)}{z^{p-1}} - p\right| \le p - \delta,$$

if

$$\sum_{k=1}^{\infty} \left(\frac{k+p}{p-\delta} \right) |a_{p+k}| |z|^k \le 1.$$
 (29)

But by using Theorem 2.1, (29) will be true if

$$\left(\frac{k+p}{p-\delta}\right)|z|^k \le \left(\frac{p+k\gamma}{p\cos\theta-\beta}\right).$$

Then

$$|z| \le \left\{ \frac{(p+k\gamma)(p-\delta)}{(p\cos\theta-\beta)(k+p)} \right\}^{\frac{1}{k}}.$$
 (30)

The result follows easily from (30).

Theorem 5.2. Let the function f(z) defined by (1) be in the class $F_{p,\theta}(\gamma,\beta)$. Then f(z) is p-valent starlike of order δ (0 \leq δ < p) in $|z| \leq r_2$, where

$$r_2 = \inf_{k \ge 1} \left\{ \frac{(p+k\gamma)(p-\delta)}{(p\cos\theta - \beta)(k+p-\delta)} \right\}^{\frac{1}{k}}.$$
 (31)

The result is sharp and the extremal function is given by (5).

Proof. We must show that

$$\left| \frac{zf'(z)}{f(z)} - p \right| \le p - \delta \text{ for } |z| \le r_2, \tag{32}$$

where r_2 is given by (31). Indeed we find from (1) that

$$\left| \frac{zf'(z)}{f(z)} - p \right| \le \frac{\sum_{k=1}^{\infty} k |a_{p+k}| |z|^k}{1 - \sum_{k=1}^{\infty} |a_{p+k}| |z|^k}.$$

Thus

$$\left| \frac{zf'(z)}{f(z)} - p \right| \le p - \delta,$$

if

$$\underset{k=1}{\overset{\infty}{\sum}} \left(\frac{k+p-\delta}{p-\delta} \right) |a_{p+k}| |z|^k \le 1.$$
 (33)

But by using Theorem 2.1, (33) will be true if

$$\left(\frac{k+p-\delta}{p-\delta}\right)|z|^k \le \left(\frac{p+k\gamma}{p\cos\theta-\beta}\right).$$

Then

$$|z| \le \left\{ \frac{(p+k\gamma)(p-\delta)}{(p\cos\theta - \beta)(k+p-\delta)} \right\}^{\frac{1}{k}}.$$
 (34)

The result follows easily from (34).

Corollary 5.1. Let the function f(z) defined by (1) be in the class $F_{p,\theta}(\gamma,\beta)$. Then f(z) is in p-valent convex of order δ $(0 \le \delta < p)$ in $|z| \le r_3$, where

$$r_3 = \inf_{k \ge 1} \left\{ \frac{p(p+k\gamma)(p-\delta)}{(k+p)(p\cos\theta - \beta)(k+p-\delta)} \right\}^{\frac{1}{k}}.$$
 (35)

The result is sharp and the extremal function is given by (5).

6. Modified Hadamard products

For the functions $f_j(z)$ (j = 1, 2) defined by (15) and belonging to the class $T_p(\theta)$, the modified Hadamard product of $f_1(z)$ and $f_2(z)$ is defined by

$$(f_1 * f_2)(z) = z^p - \sum_{k=1}^{\infty} a_{p+k,1} a_{p+k,2} z^{p+k}.$$
 (36)

Theorem 6.1. Let the functions $f_j(z)$ (j = 1, 2) defined by (15) be in the class $F_{p,\theta}(\gamma, \beta)$. Then $(f_1 * f_2)(z) \in F_{p,2\theta}(\gamma, \alpha)$ where

$$\alpha = p\cos 2\theta - \frac{(p\cos\theta - \beta)^2}{(p+\gamma)}.$$
(37)

The result is sharp for the functions $f_i(z)$ given by

$$f_j(z) = z^p - \left(\frac{p\cos\theta - \beta}{p+\gamma}\right)e^{-i\theta}z^{p+1} \ (j=1,2). \tag{38}$$

Proof. Employing the technique used ealier by Schild and Silverman [6]. We need only to find the largest α such that

$$\sum_{k=1}^{\infty} e^{2i\theta} \left(\frac{p + k\gamma}{p\cos 2\theta - \alpha} \right) a_{p+k,1} a_{p+k,2} \le 1.$$
 (39)

Since $f_j(z)$ (j=1,2) are in the class $F_{p,\theta}(\gamma,\beta)$, it follows from Theorem 2.1, that

$$\sum_{k=1}^{\infty} e^{i\theta} \left(\frac{p + k\gamma}{p \cos \theta - \beta} \right) a_{p+k,j} \le 1, \tag{40}$$

for every j = 1, 2. By the Cauchy Schwarz inequality we have

$$\sum_{k=1}^{\infty} e^{i\theta} \left(\frac{p + k\gamma}{p \cos \theta - \beta} \right) \sqrt{a_{p+k,1} a_{p+k,2}} \le 1.$$
 (41)

Therefore, (39) will be satisfied if

$$e^{2i\theta} \left(\frac{p + k\gamma}{p\cos 2\theta - \alpha} \right) a_{p+k,1} a_{p+k,2} \le e^{i\theta} \left(\frac{p + k\gamma}{p\cos \theta - \beta} \right) \sqrt{a_{p+k,1} a_{p+k,2}}.$$

Then

$$\sqrt{a_{p+k,1}a_{p+k,2}} \le \left(\frac{p\cos 2\theta - \alpha}{p\cos \theta - \beta}\right)e^{-i\theta}.$$
(42)

Since (41) implies

$$\sqrt{a_{p+k,1}a_{p+k,2}} \le \left(\frac{p\cos\theta - \beta}{p+k\gamma}\right)e^{-i\theta}.$$
 (43)

From (42) and 43 we have

$$\alpha \le p \cos 2\theta - \frac{(p \cos \theta - \beta)^2}{(p + k\gamma)}.$$
(44)

Now defining the function G(k) by

$$G(k) = p\cos 2\theta - \frac{(p\cos\theta - \beta)^2}{(p+k\gamma)},\tag{45}$$

we see that G(k) is an increasing function of k $(k \in \mathbb{N})$. Therefore, we conclude that

$$\alpha \le G(1) = p\cos 2\theta - \frac{(p\cos\theta - \beta)^2}{(p+\gamma)},\tag{46}$$

which evidently completes the proof of Theorem 6.1.

Using arguments similar to those in the proof of Theorem 6.1, we obtain the following theorem.

Theorem 6.2. Let the function $f_1(z)$ defined by (15) be in the class $F_{p,\theta}(\gamma,\beta)$. Suppose also that the function $f_2(z)$ defined by (15) be in the class $F_{p,\theta}(\gamma,\phi)$. Then $(f_1 * f_2)(z) \in F_{p,2\theta}(\gamma,\zeta)$, where

$$\zeta = p\cos 2\theta - \frac{(p\cos\theta - \beta)(p\cos\theta - \phi)}{(p+\gamma)}. (47)$$

The result is sharp for the functions $f_j(z)$ (j = 1, 2) given by

$$f_1(z) = z^p - \left(\frac{p\cos\theta - \beta}{p + \gamma}\right)e^{-i\theta}z^{p+1},\tag{48}$$

and

$$f_2(z) = z^p - \left(\frac{p\cos\theta - \phi}{p + \gamma}\right)e^{-i\theta}z^{p+1}.$$
 (49)

Theorem 6.3. Let the functions $f_j(z)$ (j = 1, 2) defined by (15) be in the class $F_{p,\theta}(\gamma, \beta)$. Then the function

$$h(z) = z^p - \sum_{k=1}^{\infty} (a_{p+k,1}^2 + a_{p+k,2}^2) z^{p+k},$$
(50)

also belongs to the class $F_{p,2\theta}(\gamma,\eta)$, where

$$\eta(p;\beta,\gamma;\theta) = p\cos 2\theta - \frac{2(p\cos\theta - \beta)^2}{(p+\gamma)}.$$
 (51)

The result is sharp for the functions given by (38).

Proof. By using Theorem 2.1, we have

$$\sum_{k=1}^{\infty} \left[e^{i\theta} \frac{p + k\gamma}{p\cos\theta - \beta} \right]^2 a_{p+k,1}^2 \le \left[\sum_{k=1}^{\infty} e^{i\theta} \frac{p + k\gamma}{p\cos\theta - \beta} a_{p+k,1} \right]^2 \le 1, \tag{52}$$

and

$$\sum_{k=1}^{\infty} \left[e^{i\theta} \frac{p + k\gamma}{p\cos\theta - \beta} \right]^2 a_{p+k,2}^2 \le \left[\sum_{k=1}^{\infty} e^{i\theta} \frac{p + k\gamma}{p\cos\theta - \beta} a_{p+k,2} \right]^2 \le 1.$$
 (53)

It follow from (52) and (53) that

$$\sum_{k=1}^{\infty} \frac{1}{2} \left[e^{i\theta} \frac{p + k\gamma}{p\cos\theta - \beta} \right]^2 (a_{p+k,1}^2 + a_{p+k,2}^2) \le 1.$$
 (54)

Therefore, we need to find the largest η such that

$$e^{2i\theta} \frac{p + k\gamma}{p\cos 2\theta - \eta} \le \frac{1}{2} \left[e^{i\theta} \frac{p + k\gamma}{p\cos \theta - \beta} \right]^2, \tag{55}$$

that is

$$\eta \le p\cos 2\theta - \frac{2(p\cos \theta - \beta)^2}{(p+k\gamma)}.$$

Since

$$D(k) = p\cos 2\theta - \frac{2(p\cos\theta - \beta)^2}{(p+k\gamma)},$$

is an increasing function of $k(k \in \mathbb{N})$, we obtain

$$\eta \le D(1) = p\cos 2\theta - \frac{2(p\cos\theta - \beta)^2}{(p+\gamma)},$$

and hence the proof of Theorem 6.3 is completed.

Remark 6.1. (1) Putting $\theta = 0$ in our results, we obtain the results obtained by Lee et al. [4]; (2) Putting $\gamma = p = 1$ in our results, we obtain the results obtained by Sekine [7].

7. Definitions and applications of fractional calculus

Many essentially equivalent definitions of fractional calculus (that is, fractional derivatives and fractional integrals) have been given in the literature (cf., e.g. [1], [9] and [10]. We find it to be convenient to recall here the following definitions which were used recently by Owa [5] and by Srivastava and Owa [8]).

Definition 7.1. The fractional integral of order μ is defined, for a function f(z), by

$$D_z^{-\mu} f(z) = \frac{1}{\Gamma(\mu)} \int_0^z \frac{f(t)}{(z-t)^{1-\mu}} dt \ (\mu > 0), \tag{56}$$

where f(z) is an analytic function in a simply-connected region of the complex z-plane containing the origin and the multiplicity of $(z-t)^{\mu-1}$ is removed by requiring $\log(z-t)$ to be real when z-t>0.

Definition 7.2. The fractional derivative of order μ is defined, for a function f(z), by

$$D_z^{\mu} f(z) = \frac{1}{\Gamma(1-\mu)} \frac{d}{dz} \int_0^z \frac{f(t)}{(z-t)^{\mu}} dt \ (0 \le \mu < 1), \tag{57}$$

where f(z) is an analytic function in a simply-connected region of the complex z-plane containing the origin and the multiplicity of $(z-t)^{-\mu}$ is removed by requiring $\log(z-t)$ to be real when z-t>0.

Definition 7.3. Under the hypotheses of definition 2, the fractional derivative of order $n + \mu$ is defined by

$$D_z^{n+\mu} f(z) = \frac{d^n}{dz^n} D_z^{\mu} f(z) \ (0 \le \mu < 1; \ n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}).$$
 (58)

Theorem 7.1. Let the function f(z) defined by (1) be in the class $F_{p,\theta}(\gamma,\beta)$. Then we have

$$\left| D_z^{-\mu} f(z) \right| \ge \frac{\Gamma(p+1)}{\Gamma(p+\mu+1)} \left| z \right|^{p+\mu} \left\{ 1 - \frac{(p+1)(p\cos\theta - \beta)}{(p+\gamma)(p+\mu+1)} \left| z \right| \right\},\tag{59}$$

and

$$\left| D_z^{-\mu} f(z) \right| \le \frac{\Gamma(p+1)}{\Gamma(p+\mu+1)} |z|^{p+\mu} \left\{ 1 + \frac{(p+1)(p\cos\theta - \beta)}{(p+\gamma)(p+\mu+1)} |z| \right\},\tag{60}$$

for $\mu > 0$ and $z \in U$. The result is sharp.

Proof. Let

$$F(z) = \frac{\Gamma(p+\mu+1)}{\Gamma(p+1)} z^{-\mu} D_z^{-\mu} f(z)$$
$$= z^p - \sum_{k=1}^{\infty} \frac{\Gamma(p+k+1)\Gamma(p+\mu+1)}{\Gamma(p+1)\Gamma(p+k+\mu+1)} a_{p+k} z^{p+k}.$$

Then

$$F(z) = z^{p} - \sum_{k=1}^{\infty} \Psi(k) a_{p+k} z^{p+k}, \tag{61}$$

where

$$\Psi(k) = \frac{\Gamma(p+k+1)\Gamma(p+\mu+1)}{\Gamma(p+1)\Gamma(p+k+\mu+1)} \ (\mu > 0).$$

Since $\Psi(k)$ is an decreasing function of k ($k \in \mathbb{N}$), then

$$0 < \Psi(k) \le \Psi(1) = \frac{(p+1)}{(p+\mu+1)}.$$
(62)

From (61) and (62), we have

$$|F(z)| \ge |z|^p - \Psi(1)|z|^{p+1} \sum_{k=1}^{\infty} |a_{p+k}|.$$
 (63)

In view of (9) and (63), we have

$$|F(z)| = \left| \frac{\Gamma(p+\mu+1)}{\Gamma(p+1)} z^{-\mu} D_z^{-\mu} f(z) \right| \ge |z|^p - \frac{(p+1)(p\cos\theta - \beta)}{(p+\gamma)(p+\mu+1)} |z|^{p+1},$$

and

$$|F(z)| = \left| \frac{\Gamma(p+\mu+1)}{\Gamma(p+1)} z^{-\mu} D_z^{-\mu} f(z) \right| \le |z|^p + \frac{(p+1)(p\cos\theta - \beta)}{(p+\gamma)(p+\mu+1)} |z|^{p+1}.$$

which proves the inequalities of Theorem 7.1. Further equalities are attained for the function

$$D_z^{-\mu} f(z) = \frac{\Gamma(p+1)}{\Gamma(p+\mu+1)} z^{p+\mu} \left\{ 1 - \frac{(p+1)(p\cos\theta - \beta)}{(p+\gamma)(p+\mu+1)} z \right\},\tag{64}$$

or

$$f(z) = z^{p} - \frac{p\cos\theta - \beta}{p + \gamma}e^{-i\theta}z^{p+1}(z = \pm |z|e^{i\theta}).$$
 (65)

Using arguments similar to those in the proof of Theorem 7.1, we obtain the following theorem.

Theorem 7.2. Let the function f(z) defined by (1) be in the class $F_{p,\theta}(\gamma,\beta)$. Then we have

$$|D_z^{\mu} f(z)| \ge \frac{\Gamma(p+1)}{\Gamma(p-\mu+1)} |z|^{p-\mu} \left\{ 1 - \frac{(p+1)(p\cos\theta - \beta)}{(p+\gamma)(p-\mu+1)} |z| \right\},\tag{66}$$

and

$$|D_z^{\mu} f(z)| \le \frac{\Gamma(p+1)}{\Gamma(p-\mu+1)} |z|^{p-\mu} \left\{ 1 + \frac{(p+1)(p\cos\theta - \beta)}{(p+\gamma)(p-\mu+1)} |z| \right\},\tag{67}$$

for $0 \le \mu < 1$ and $z \in U$. The result is sharp for the function f(z) given by (65).

Remark 7.1. (1) Putting $\theta = 0$ in our results, we obtain the results obtained by Aouf and Darwish [2];

(2) Putting $\theta = 0$ and p = 1 in our results, we obtain the results obtained by Bhoosnurmath and Swamy [3].

References

- [1] Aouf, M. K., (1990), On fractional derivatives and fractional integrals of certain subclasses of starlike and convex functions, Math. Japon. 35, no. 5, pp. 831-837.
- [2] Aouf, M. K., Darwish, H. E., (1994), Basic properties and characterizations of a certain class of analytic functions with negative coefficients . II, Utilitas Math., 46, pp.167-177.
- [3] Bhoosnurmath, S. S., Swamy, S. R., (1985), Certain classes of analytic functions with negative coefficients, Indian J. Math. 27, pp.89-98.
- [4] Lee, S. K., Owa, S., Srivastava, H. M., (1989), Basic properties and characterizations of a certain class of analytic functions with negative coefficients, Utilitas Math., 36, pp.121-128.
- [5] Owa, S., (1978), On the distortion theorems. I, Kyungpook Math. J. 18, pp.53-59.
- [6] Schild, A., Silverman, H., (1975), Convolutions of univalent functions with negative coefficients, Ann. Univ. Mariae-Curie Sklodowska Sect. A, 29, pp.109-116.
- [7] Sekine, T., (1991), On generalized class of analytic functions with negative coefficients, Math. Japon. 36, 1, pp.13-19.
- [8] Srivastava, H. M., Owa, S., (1984), An application of the fractional derivative, Math. Japon. 29, pp.383-389.
- [9] Srivastava, H. M., Owa, S., (Editors), (1989), Univalent Functions, Fractional Calculus, and Their Applications, Halsted press (Ellis Horwood Limited Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto.
- [10] Srivastava, H. M., Aouf, M. K., (1995), A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients. I and II, J. Math. Anal. Appl., 171(1992), 1-13; ibid. 192, pp.973-688.

Rabha Mohammed El-Ashwah, for a photograph and biography, see TWMS J. Pure Appl. Math., V.4, N.1, 2013, p.101.

Mohammed Kamal Aouf, for a photograph and biography, see TWMS J. Pure Appl. Math., V.4, N.1, 2013, p.101.

Hanaa Mousa Ahmed Zayed was born in 1986, in Kafr El-Sheikh (Egypt). She works as assistant lecturer, Department of Mathematics, Faculty of Science, Menofia University, Egypt. Her research interest is Complex Analysis and Functional Analysis.